Loading...

Elaris Computing Nexus

Elaris Computing Nexus


Performance Evaluation of DDS Middleware Impact on Packet Loss and Latency Across QoS Profiles and Platforms


Elaris Computing Nexus

Received On : 10 December 2024

Revised On : 30 January 2025

Accepted On : 02 February 2025

Published On : 10 February 2025

Volume 01, 2025

Pages : 01-010


Abstract

This article presents a performance analysis of the DDS middleware, focusing on packet loss and delay across various Quality of Service (QoS) configurations and network modes. A testbed was established with three physical nodes (Mac13, Mac15, and Raspberry Pi4) utilizing Gigabit Ethernet and Wi-Fi interfaces to configure diverse operational conditions. These experiments were conducted across an Ethernet and a 5 GHz WiFi network to evaluate the performance of DDS under deterministic and probabilistic network settings. A series of experiments were conducted utilizing various payload sizes (ranging from 92 to 1024 bytes) and distinct Quality of Service configurations, including Best Effort, B2STKA, R10TKL, and B10TKL. The results provide a summary of the timing of packet loss, the impact of QoS regulations on latency, and the performance trade-offs among operating systems (Linux, macOS, and Raspberry Pi OS).

Keywords

Data Distribution Service, Packet Loss, Latency, Quality of Service, Network Performance, Operating Systems, Real-Time Systems, Ethernet, Wi-Fi, Middleware.

  1. W.-Y. Liang, Y. Yuan, and H.-J. Lin, “A performance study on the throughput and latency of Zenoh, MQTT, Kafka, and DDS,” arXiv (Cornell University), Jan. 2023, doi: 10.48550/arxiv.2303.09419.
  2. L. J. Dust, E. Persson, M. Ekstrom, S. Mubeen, and E. Dean, “Quantitative analysis of communication handling for centralized multi-agent robot systems using ROS2,” 2022 IEEE 20th International Conference on Industrial Informatics (INDIN), pp. 624–629, Jul. 2022, doi: 10.1109/indin51773.2022.9976160.
  3. K. Krinkin, A. Filatov, A. Filatov, O. Kurishev, and A. Lyanguzov, “Data Distribution Services Performance Evaluation Framework,” 2018 22nd Conference of Open Innovations Association (FRUCT), pp. 94–100, May 2018, doi: 10.23919/fruct.2018.8468297.
  4. R. Fujdiak., “Security and Performance Trade-offs for Data Distribution Service in Flying Ad-Hoc Networks,” 2019 11th International Congress on Ultra-Modern Telecommunications and Control Systems and Workshops (ICUMT), pp. 1–5, Oct. 2019, doi: 10.1109/icumt48472.2019.8970670.
  5. V. Bode, C. Trinitis, M. Schulz, D. Buettner, and T. Preclik, “DDS Implementations as Real-Time Middleware – A Systematic Evaluation,” 2023 IEEE 29th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), pp. 186–195, Aug. 2023, doi: 10.1109/rtcsa58653.2023.00030.
  6. R. Endeley, T. Fleming, N. Jin, G. Fehringer, and S. Cammish, “A Smart Gateway Enabling OPC UA and DDS Interoperability,” 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pp. 88–93, Aug. 2019, doi: 10.1109/smartworld-uic-atc-scalcom-iop-sci.2019.00058.
  7. F. B. Cheikh, M. A. Mastouri, and S. Hasnaoui, “Implementing a Real-Time Middleware Based on DDS for the Cooperative Vehicle Infrastructure Systems,” 2010 6th International Conference on Wireless and Mobile Communications, pp. 492–497, Sep. 2010, doi: 10.1109/icwmc.2010.49.
  8. L. Bertaux, A. Hakiri, S. Medjiah, P. Berthou, and S. Abdellatif, “A DDS/SDN Based Communication System for Efficient Support of Dynamic Distributed Real-Time Applications,” 2014 IEEE/ACM 18th International Symposium on Distributed Simulation and Real Time Applications, pp. 77–84, Oct. 2014, doi: 10.1109/ds-rt.2014.18.
  9. H. A. Putra and D.-S. Kim, “Node discovery scheme of DDS for combat management system,” Computer Standards & Interfaces, vol. 37, pp. 20–28, Jun. 2014, doi: 10.1016/j.csi.2014.05.002.
  10. A. Alaerjan, “Formalizing the semantics of DDS QOS policies for improved communications in distributed smart grid applications,” Electronics, vol. 12, no. 10, p. 2246, May 2023, doi: 10.3390/electronics12102246.
  11. K. An, S. Pradhan, F. Caglar, and A. Gokhale, “A publish/subscribe middleware for dependable and real-time resource monitoring in the cloud,” SDMCMM ’12: Proceedings of the Workshop on Secure and Dependable Middleware for Cloud Monitoring and Management, pp. 1–6, Dec. 2012, doi: 10.1145/2405186.2405189.
  12. C. O’Ryan, F. Kuhns, D. C. Schmidt, O. Othman, and J. Parsons, “The design and performance of a pluggable protocols framework for Real-Time Distributed Object Computing middleware,” in Lecture notes in computer science, 2000, pp. 372–395. doi: 10.1007/3-540-45559-0_19.
  13. M. Carrascosa-Zamacois, G. Geraci, E. Knightly, and B. Bellalta, “Wi-Fi Multi-Link operation: An experimental study of latency and throughput,” IEEE/ACM Transactions on Networking, vol. 32, no. 1, pp. 308–322, Jun. 2023, doi: 10.1109/tnet.2023.3283154.
  14. A. Saifullah, Y. Xu, C. Lu, and Y. Chen, “Real-Time Scheduling for WirelessHART Networks,” 2010 31st IEEE Real-Time Systems Symposium, Nov. 2010, doi: 10.1109/rtss.2010.41.
  15. D. Aksoy and M. Franklin, “Scheduling for large-scale on-demand data broadcasting,” Proceedings. IEEE INFOCOM ’98, the Conference on Computer Communications. Seventeenth Annual Joint Conference of the IEEE Computer and Communications Societies. Gateway to the 21st Century (Cat. No.98, vol. 2, pp. 651–659, Nov. 2002, doi: 10.1109/infcom.1998.665086.
  16. K. A. Hawick, P. D. Coddington, and H. A. James, “Distributed frameworks and parallel algorithms for processing large-scale geographic data,” Parallel Computing, vol. 29, no. 10, pp. 1297–1333, Sep. 2003, doi: 10.1016/j.parco.2003.04.001.
  17. A. Zervopoulos et al., “Wireless sensor network synchronization for precision agriculture applications,” Agriculture, vol. 10, no. 3, p. 89, Mar. 2020, doi: 10.3390/agriculture10030089.
  18. B. Almadani, M. N. Bajwa, S.-H. Yang, and A.-W. A. Saif, “Performance Evaluation of DDS-Based Middleware over Wireless Channel for Reconfigurable Manufacturing Systems,” International Journal of Distributed Sensor Networks, vol. 11, no. 7, p. 863123, Jul. 2015, doi: 10.1155/2015/863123.
  19. B. Li, Y. Zhu, X. Yao, C. Jiang, K. Lu, and Z. Sun, “Enabling deterministic transmission for DDS by leveraging IEEE 802.1Qbv time-sensitive networking,” Computer Networks, vol. 261, p. 111128, Feb. 2025, doi: 10.1016/j.comnet.2025.111128.
  20. K. An, S. Shekhar, F. Caglar, A. Gokhale, and S. Sastry, “A cloud middleware for assuring performance and high availability of soft real-time applications,” Journal of Systems Architecture, vol. 60, no. 9, pp. 757–769, Feb. 2014, doi: 10.1016/j.sysarc.2014.01.009.
CRediT Author Statement

The author reviewed the results and approved the final version of the manuscript.

Acknowledgements

The authors would like to thank to the reviewers for nice comments on the manuscript.

Funding

No funding was received to assist with the preparation of this manuscript.

Ethics Declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Availability of Data and Materials

Data sharing is not applicable to this article as no new data were created or analysed in this study.

Author Information

Contributions

All authors have equal contribution in the paper and all authors have read and agreed to the published version of the manuscript.

Corresponding Author



Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution NoDerivs is a more restrictive license. It allows you to redistribute the material commercially or non-commercially but the user cannot make any changes whatsoever to the original, i.e. no derivatives of the original work. To view a copy of this license, visit: https://creativecommons.org/licenses/by-nc-nd/4.0/

Cite this Article

Nandhini Priya T, “Performance Evaluation of DDS Middleware Impact on Packet Loss and Latency Across QoS Profiles and Platforms”, Elaris Computing Nexus, pp. 01-010, 10 February 2025, doi: 10.XXXXX/ECN/2025001.

Copyright

© 2025 Nandhini Priya T. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.