
Volume 1, 2025, Pages 01-10 Elaris Computing Nexus

| Regular Article | Open Access

1

Performance Evaluation of DDS Middleware

Impact on Packet Loss and Latency Across QoS

Profiles and Platforms
Nandhini Priya T

Department of Electrical and Electronics Engineering, Excel Engineering College, Komarapalayam, Namakkal, India.

nandhinipriyat.eec@excelcolleges.com

Article Info

Journal of Elaris Computing Nexus

https://elarispublications.com/journals/ecn/ecn_home.html

© The Author(s), 2025.

https://doi.org/10. XXXX/ECN/2025001

Received 10 December 2024

Revised from 30 January 2025

Accepted 02 February 2025

Available online 10 February 2025

Published by Elaris Publications.

Corresponding author(s):

Nandhini Priya T, Department of Electrical and Electronics Engineering, Excel Engineering College, Komarapalayam,

Namakkal, India.

Email: nandhinipriyat.eec@excelcolleges.com

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (https://creativecommons.org/ licenses/by/4.0/).

Abstract – This article presents a performance analysis of the DDS middleware, focusing on packet loss and delay across

various Quality of Service (QoS) configurations and network modes. A testbed was established with three physical nodes

(Mac13, Mac15, and Raspberry Pi4) utilizing Gigabit Ethernet and Wi-Fi interfaces to configure diverse operational

conditions. These experiments were conducted across an Ethernet and a 5 GHz WiFi network to evaluate the performance

of DDS under deterministic and probabilistic network settings. A series of experiments were conducted utilizing various

payload sizes (ranging from 92 to 1024 bytes) and distinct Quality of Service configurations, including Best Effort,

B2STKA, R10TKL, and B10TKL. The results provide a summary of the timing of packet loss, the impact of QoS

regulations on latency, and the performance trade-offs among operating systems (Linux, macOS, and Raspberry Pi OS).

Keywords – Data Distribution Service, Packet Loss, Latency, Quality of Service, Network Performance, Operating

Systems, Real-Time Systems, Ethernet, Wi-Fi, Middleware.

I. INTRODUCTION

Reliable Communications in distributed frameworks necessitate the participation of a middleware, communication channel,

and an application. The program executes core functionalities and often assumes one of two critical functions: server or

client. Irrespective of the function, the application may function as either a receiver and a transmitter (such as a client

receiving feedback, or transmitting requests, correspondingly. The application counterparts interact over the communication

channel, sometimes using the system middleware, which encompasses a collection of services situated above the network or

under the application layer, often enabling dependable communication and coordination among dispersed application peers

(e.g., RSocket and FSocket). Middleware generally offers application developers elevated programming abstractions (e.g.,

using remote items in lieu of sockets) and can also furnish an intermediary broker to dissociate the connection between

receiver and sender (e.g., ZeroMQ), among other options.

The Data Distributed Service (DDS) is an official protocol established by the OMG (object management group), widely

utilized in embedded frameworks, particularly within aerospace, military sectors, and industrial automation. DDS delineates

an API intended for facilitating real-time data dissemination. It employs a publish-subscribe (Pub/Sub) communication

mechanism and accommodates both data-object oriented data structures and messaging structures. Over time, DDS has

progressed via several revisions and additions, including both commercial and open-source implementation. Numerous

application sectors are embracing it, including smart grid, healthcare, military, aerospace, autonomous systems, industrial

IoT, and robotics. Table 1 enumerates some notable DDS middleware systems currently available.

Volume 1, 2025, Pages 01-10 Elaris Computing Nexus

| Regular Article | Open Access

2

DDS utilizes a data-oriented Pub/Sub system to provide efficient and reliable communications in instantaneous, mission-

based, and diverse networked systems. It simplifies the intricacies of communication control, decreasing model

interdependence while improving reliability and adaptability via wrapping. DDS enhances data compatibility by

accommodating many formats, such as OMG IDL (Interface Definition Language) and XML (Extensible Markup

Language). Moreover, it is interoperable with UDP and TCP socked, facilitating efficient and flexible data transfer. It has

comprehensive QoS standards that accommodate many communication topologies, including the specification of data

transfer periods and the activation of temporal-event triggers. Table 2 delineates significant milestones in the growth of

DDS middleware, spanning from the original 2004 standardization to the most recent improvements in 2024.

Table 1. Major DDS Middleware Technologies

Authors Middleware

Name

Release

Year

Version Free & Open

Source

Company/Organization

Liang, Yuan, and

Lin, [1]
Cyclone DDS May. 2024 0.10.5 Yes

Eclipse Foundation (via

ZettaScale)

Dust et al. [2] GurumDDS - 3.2.0 No GurumNetworks

Krinkin et al. [3]
Vortex

OpenSplice
Mar. 2021 6.9.0 Yes ADLINK Technology

Fujdiak et al. [4] CoreDX DDS 2020 5.0.0 No Twin Oaks Computing

Bode et al. [5] Fast DDS Mar. 2025 3.2.0 Yes eProsima

Table 2. Sequential Chronology of DDS Evolution

Year Milestones

2004 OMG's first DDS 1.0 release.

2006 DDS 1.2 protocol is created; initial industrial application starts.

2007 RTI introduces DDS middleware, which improves industrial application scalability.

2008–2010
DDS advances interest in aerospace and military due to its reduced latency

communications. Initial use of IoT and intelligent grids starts.

2009 Initial ROS distribution launched: Mango Tango.

2010 ROS 1 launched.

2010 ROS employs DDS principles implicitly through integration layers.

2012
OMG released DDS v1.4, which has enhanced dynamic discovery capabilities and QoS

protocols.

2014
Commencement of DDS Security Protocol Design. ROS 2 designates DDS as the standard

middleware, enhancing acceptance in robotics and automations.

2015 DDSI-RTPS 2.20 released, enhancing real-time scalability.

2016 DDS used in driverless cars for instantaneous communications.

2017 Release of ROS 2, which formally designates DDS as the main middleware.

2018

Secure DDS version 1.1 has been finished, including encryption, access control, and

authentication features. The ROS 2 “Ardent Apalone” version incorporates DDS,

supplanting the centralized design of ROS 1. Prominent DDS providers (OpenDDS, Fast

DDS, and RTI Connext) enhance their support for autonomous systems and IoT.

2019
Eclipse Cyclone DDS becomes the standard ROS 2 middleware and is extensively used in

automations and robotics.

2020

X-Types v1.3, with flexible data structures, published to provide scalability in DDS

communications. The application of DDS has broadened in self-driving cars, cloud-end-

end fusion systems, intelligent grids, and drones for industrial robots.

2021 DDS security used in military robots and UAV swarms to mitigate rogue node assaults.

2023
FogROS2 Scheduler/Controller utilizes DDS to provide safe worldwide networking in

decentralized robotics.

2023
Research emphasizes the latency-based trade-offs associated with implementing DDS

privacy in real-time networks.

2024

Recent DDS updates (e.g., Fast DDS 3.2, RTI Connext 7.4) provide minimal delay and

improved compatibility, accommodating ML/AI pipelines for real-time inferences and

remote robotic learning.

Research on DDS and OPC UA for compatibility is now underway. Endeley et al. [6] introduced an intelligent gateway

to facilitate compatibility between DDS and OPC UA within an IIoT context. The OPC UA function suit is integrated via

the intelligent gateway, facilitating communication between DDS and OPC UA. Nonetheless, it is confined to OPC UA and

lacks support for OPC UA Pub-Sub.

Volume 1, 2025, Pages 01-10 Elaris Computing Nexus

| Regular Article | Open Access

3

Cheikh, Mastouri, and Hasnaoui [7] advocated for the employment of data-centric middleware to facilitate collaborative

vehicular models for vehicle-to-infrastructure or V2V interaction. Their suggested data-centric middleware utilizes the Pub-

Sub concept and incorporate QoS capability. They offered a comprehensive distributed architecture using a DDS as an

embedded lab framework for avionics. The proposed system enables the evaluation of modular avionics alongside the whole

model, which includes simulated entities and actual hardware, by integrating several communication bus protocols and

enhancing adaptability via data gateways and DDS. They also presented a DDS gateway design facilitating interaction across

DDS regions for extensive CPS (cyber-physical systems). Their design has four primary elements: network module, routing

manager, topic manager, and interface module, along with a mechanism to mitigate blocks via sequential access.

The aforementioned studies indicate that DDS is used across several domains, such as IIoT, automotive, avionics, and

CPS, highlighting the increasing significance of connectivity and interoperability across diverse systems. Furthermore, the

majority of current research emphasizes gateways for DDS and OPC UA, with less consideration for scalability. Our work

focuses on the systematic comparison of communication capabilities of DDS middleware in different network scenarios and

profiles of Quality of Service (QoS). Through structured experimentation across several hardware platforms and operating

systems, the experiment seeks to measure core performance variables like packet loss and latency.

The remaining sections of this study is organized in the following manner: Section II provides a background study of our

work, highlighting the effect of QoS policies on real-time communication, and comparative network studies across different

protocols and platforms. Section III describes our experimental architecture, data collection, as well as QoS profiles and

system configuration. Section IV and V provide a detailed discussion of our findings. Lastly, Section VI concludes the study

and highlights the significance of evaluating DDS middleware across various network setups and QoS profiles, which impact

packet loss and latency.

II. BACKGROUND STUDY

Impact of QoS Policies On Real-Time Communication

Study on validating QoS policies for DDS is scarce. From a model-riven viewpoint, the specification of QoS policies is a

component of DDS architecture modeling. This section summarizes current research in DDS modeling. We also examine

several studies on the integration of DDStosmart grids. Bertaux et al. [8] examined the employment of DDS QoS rules to

fulfill the quality needs of real-time systems comprehensively. They specifically concentrate on quality rules specification

for data availability and latency using the MARTE (modeling and analysis of real-time embedded systems) framework. In

this paper, the significance of QoS policy modeling in DDS is comprehensively elucidated. Their findings indicate that both

the growth process and the quality of communication may be enhanced.

The work by Putra and Kim [9] advocated customizing the DDS participant discovery for a combat system depending

on the system's attributes and needs. The customized model interacts with several levels in DDS, including those near to the

discovery system and more remote ones, such as the interface layer. They suggested a model-based methodology for tailoring

DDS to accommodate WSNs. A layer was established underneath DCPS in DDS to facilitate the adoption of DDS for WSNs.

In their research [10], Alaerjan identified the deficiencies in DCPS to enhance DDS standard coverage using UML. The

enhanced model serves as the foundation for developing flexible DDS to accommodate nodes with constrained

computational resources.

Fig 1. UML Flowchart Illustrating the DDS Data-Oriented Publish-Subscribe Interfaces

Fig. 1 depicts the comprehensive data-centric Pub-Sub paradigm, including the following entities: Topic, Subscriber,

Publisher, DataReader, DataWriter, and Domain Participant. All these entities inherit from Entity, signifying their capacity

to be set by QoS rules, enabled, receive event notifications via listener objects, and accommodate situations that the

application may await. Every entity base class specialization has a matching dedicated receiver and an entity of appropriate

QoSPolicy settings. The publisher denotes the entities accountable for data dissemination. A Publisher can disseminate data

of several forms. A DataWriter serves as a keyed interface to a Pub; participants employ DataWriter(s) to convey the value

<<entity>>

Subscriber

<<entity>>

Publisher

 Every <<entity>> has

1. Listener

2. StatusCondition and Status List

3. QosPolicy list

Volume 1, 2025, Pages 01-10 Elaris Computing Nexus

| Regular Article | Open Access

4

and modifications of data of a certain form. Upon receipt of novel data values, the Publisher is responsible for deciding the

appropriate timing for issuing the associated message and executing the release, in accordance with its QoS, the QoS

associated with the relevant DataWriter, or/and its internal condition.

Certain QoS regulations are now implemented in several Pub-Sub systems or models, including CORBA Notification

Service, Distributed Asynchronous Collections, and Java Message Service. This pertains to message dependability, message

priority, earliest delivery time, expiration time, message ordering, or duplicate message identification, for example. These

QoS criteria may be supported or unsupported, depending upon the architecture. To our knowledge, QoS factors like as loss

ratio, jitter, availability, bandwidth, and latency, extensively examined in the direct communication framework, are

insufficiently addressed in Pub-Sub models.

An et al. [11] review various QoS strategies influenced by fluctuations in network and computing resources, as well as

the automated configuration of Pub/Sub intermediary software in cloud settings. The suggested method modifies the network

transport platform to synchronize with the middleware, addressing QoS configuration challenges in DRE (distributed real-

time embedded) models inside cloud settings. The methodology employs ANN techniques to dynamically ascertain the

appropriate transport channel for the Pub/Sub intermediary software after the execution of the DRE model. ANN instruments

are learned with data settings to optimize QoS and forecast feedback duration required in DRE models. The method

employed by the middleware employed the ANT (adaptive network transports) architecture to choose the optimal transport

protocol, considering different QoS factors in relation to the availability of computing power.

Comparative Network Studies Across Platforms and Protocols

According to O’Ryan et al. [12], the selection of an operating system has a major influence on the performance of

middleware, especially in real-time and distributed applications. They analyzed real-time communication protocols and

found that Linux, due to its monolithic kernel and its full customization capabilities, is much faster in situations that promote

low latency, high throughput communication. Because Linux supports explicit thread handling and core binding, it can be

particularly useful to middleware that performs high-frequency messaging or real-time data flow. MacOS, meanwhile, is

stable and easy to work with but lacks versatility in such optimizations and Raspberry Pi OS (a lightweight Linux operating

system) is suitable in terms of edge execution due to affordably priced, but ultimately restricted by hardware constraints.

Middlewares also rely heavily on the type of network they use. The post-processing data will be based on Ethernet

connections as these connections offer better stability, lower latency, and less packet loss than Wi-Fi connections, as

mentioned by Carrascosa-Zamacois et al. [13]. The benefit of Wi-Fi, its convenience, comes at the cost of variable latency

and increased interference susceptibility, and these factors can negatively impact middleware performance, particularly in

applications where timely and reliable data delivery are required. This can also be inferred in the IoT middleware

benchmarks, where Ethernet is more capable of greater throughput and consistent performance.

Transport modes, including unicast and multicast also affect middleware scalability and resource demands. Unicast is

compatible and reliable, in that dedicated streams of data can be dedicated to each client, although the resource needs are

linear with the number of clients. Multicast, in contrast supports efficient one-to-many communication, lowering server and

network load with shared communication. Nevertheless, the use of multicast requires network architecture support and OS,

and can be less dynamic or complicated in heterogeneous or wireless networks. Collectively, these works express that

optimal middleware performance is obtained when there is a specific mapping of OS, network type and transport mode to

application demands and deployment context.

III. DATA AND METHODS

To objectively analyze the communication performance of the DDS middleware, this study presented an experimental

platform that included carefully controlled hardware platforms, network topologies and stacked software layers. The goal of

this part was to record the packet behavior in real time, the change in latency and the packet loss patterns using appropriate

data collection techniques and Industry standard analysis tools based on different QoS configurations.

Experimental Architecture

The hardware platform comprised three physical nodes, a publishing workstation (Mac13), a subscribing workstation

(Mac15) and a Raspberry Pi 4 Model B. Every node was capable of Gigabit Ethernet interface and 5 GHz wireless LAN.

The experiments were performed both over Ethernet and Wi-Fi to model different operating environments, e.g., deterministic

links with Ethernet and probabilistic links in the case of Wi-Fi. The machines were run with macOS Ventura (v13.6.5), the

Linux distribution of Ubuntu 22.04 LTS, and the Raspberry Pi distribution (Debian-based), providing a wide range of

execution environment.

The communication structure between the DDS was implemented based on eProsima Fast DDS v2.10 that supported

dynamic QoS policy setup, participant discovery, and real-time publish-subscribe. Wireshark v4.2 was used as the main

packet capture application with the following filters frame.len == 194 being used to narrow down and capture DDS specific

Volume 1, 2025, Pages 01-10 Elaris Computing Nexus

| Regular Article | Open Access

5

packets. In each test uniform sized data packets (payloads of 92 to 1024 bytes) were published at a uniform interval, and the

transmission integrity was measured on 10,000 iterations.

Data Collection and Measurement

The key performance indicators were packet loss ratio and end-to-end latency, which were captured with timestamps placed

in DDS message headers and trace packet information on the system level. The ratio was calculated as the packet loss ratio

(PLR) by comparing total number of published packets 𝑃𝑡𝑜𝑡𝑎𝑙 with successful packets received 𝑃𝑟𝑒𝑐𝑣 in Eq. (1).

 PLR =
𝑃𝑡𝑜𝑡𝑎𝑙−𝑃𝑟𝑒𝑐𝑣

𝑃𝑡𝑜𝑡𝑎𝑙
× 100 (1)

Latency (𝐿) was defined as the time arrival difference between the DDS message timestamp 𝑇𝑝𝑢𝑏
(𝑖)

 of the publisher node

and the timestamp of its reception 𝑇𝑠𝑢𝑏
(𝑖)

 at the subscriber node. This is expressed as Eq. (2) where i varies to every message.

 𝐿𝑖 = 𝑇𝑠𝑢𝑏
(𝑖)

− 𝑇𝑝𝑢𝑏
(𝑖)

, for 𝑖 = 1,2, … , 𝑁 − 𝑊 + 1 (2)

The short-term jitter was solved by computing a rolling average latency measure with window of size 𝑊 as in Eq. (3).

 𝐿̅𝑗 =
1

𝑊
∑ 𝐿𝑘 where 𝑗 = 1,2, … , 𝑁 − 𝑊 + 1

𝑗+𝑊−1
𝑘=𝑗 (3)

The strategy ironizes out high signal fluctuations and allows displaying long-term structural latency tendencies.

QoS Profiles and System Configurations

The DDS middleware was both set with default and custom QoS settings. In particular, they contested the following

configurations: Best Effort, B10TKL, R10TKL and B2STKA where reliability, durability, and history depth combinations

vary in each case. These QoS profiles were then plotted to situations in which low latency or high reliability were prioritized

as per application objective. The test procedure contained 10 sets in each of the configurations and each of the sets involved

10,000 messages transmitted. A restart of the system was made between tests to counteract cumulative memory or buffer

effects. Table 3 summarizes the details of testing conditions used in each of the test profiles.

Table 3. Test Configurations and QoS Settings

Test ID Network Type OS Platform QoS Profile Payload Size

(Bytes)

Iterations Interval (ms)

T1 Ethernet Linux Best Effort 194 10,000 10

T2 Wi-Fi (5 GHz) macOS B10TKL 194 10,000 10

T3 Ethernet Raspberry Pi R10TKL 194 10,000 10

T4 Wi-Fi (5 GHz) Linux B2STKA 194 10,000 10

T5 Ethernet macOS B10TKL 1024 10,000 5

Collisions, jitter and dropped frames were observed in network interfaces with a particular focus on multicast group

results and interface queue latencies. Latency anomalies were matched with the operating system kernel logs where

measurement validity was addressed.

IV. RESULTS

We evaluate the incidence of communication packet delay, considering the data volume and rate specifications of the users’

application. We evaluated the efficacy of the DDS communication structure using DDS intermediary software via tests

designed to assess network performance and detect occurrences of packet loss. We assessed the efficacy of the Ethernet

protocol by transmitting successive batches of DDS data packets and quantifying the packet delay from the Pub to the Sub.

We repeated the procedure for both multicast and unicast setups to ascertain the permissible degree of frame delay that might

not hinder the application's efficiency. Fig. 2 and Fig. 3 depict the findings, demonstrating the duration of the trial in

correlation with the incidence of packet delay, as documented by Wireshark. The trials were performed on shared-time

servers, indicating that implementation on systems with real-time OS (operating systems) might enhance efficiency metrics

further.

Fig. 2 presents a Wireshark screenshot of client data transferred over the DDS standard. Fig. 3 illustrates the DDS

standard frames, which were captured and processed protocol frames according to their packet size in Wireshark. The

efficiency analysis shown in Fig. 4 examines the correlation between test iterations and packet delay for DDS functioning

under a best-effort QoS setting. Furthermore, Fig. 5 presents an examination of the frequency of dropped data packets and

the reliability of the DDS 5 GHz wireless link. It presents the exact technological specifications of the wireless interface

employed by both the publisher and subscriber. The noted associations between the received and released data in DDS

transport suggests a minimal packet loss rate, possibly attributable to the absence of networking traffic in the local test

setting.

Volume 1, 2025, Pages 01-10 Elaris Computing Nexus

| Regular Article | Open Access

6

Fig 2. Client data with 92 Bytes in The Retrieved DDS Protocol, As Analyzed by Wireshark

Fig 3. Obtained DDS Protocol Packets; Wireshark filters (frame.len==194)

Fig 4. Best-Effort QoS and DDS

Volume 1, 2025, Pages 01-10 Elaris Computing Nexus

| Regular Article | Open Access

7

Fig 5. Packet Delay and Trustworthiness Efficiency for DDS On 5 Ghz Wifi with A Best Effort Qos Configuration

Fig. 6 and Fig. 7 provide a detailed examination of the rolling average latency, taking into account various QoS rules,

on 2 workstations designated as publisher (Mac13) and subscriber (Mac15). The statistics depict the fluctuations in latency

patterns over different packet amounts, highlighting the impacts of various QoS rules, including R10TKL and B10TKL.

Latency, quantified in ms, assesses the immediate efficiency of the communication channel.

Fig 6. Analysis of Rolling Average Latency Patterns Across Various QoS Rules in a Pub/Sub Framework

Volume 1, 2025, Pages 01-10 Elaris Computing Nexus

| Regular Article | Open Access

8

Fig 7. Comparison of Average Latency Trends Relative to Qos Policy Between Macos and Linux, As Well As

Between Raspberry Pi and Macos Computers

Fig. 7 presents a bar chart illustrating latency averages, offering a clear depiction of the differing efficiency across various

groupings of OS across many QoS situations, including B2STKA, R10TKL, and B10TKL. The findings illustrate the delay

anticipated when deploying these systems under specified QoS conditions. The results indicate that QoS settings

substantially affect the delay encountered by the systems. B10TKL demonstrates differing latencies when utilized with

MacOS and Linux in contrast to MacOS and Raspberry Pi, as seen in Fig. 7. These findings are crucial for enhancing real-

time connectivity standards in microgrid environments, where rapid data transmission is critical.

V. DISCUSSION

The dissemination of real-time data has lately become a significant study domain. A workshop focused on the subject “1st

International Workshop on Data Distribution in Real-Time Systems (DDRTS'2003)” took place in May 2003. The OMG

enhances research initiatives by normalizing data delivery inside an intermediary service. The formulation of dynamic

scheduling techniques in data-centric Pub-Sub systems operating on real-time networks is a significant research challenge,

and in recent years, several teams and businesses have actively engaged in this area. The issue of planning the transmission

of real-time data is addressed in [14]. It offers a refined variant of the Longest-processing-time-first (LPT), which minimizes

overhead.

Comparable research [15] delineates a Broadcast on Demand methodology that organizes the broadcast using the 1st

deadline first, hybrid, or periodic scheduling techniques. The study presented in [16] outlines a conjectural data distribution

service, which leverages temporal and geographic reference locality to ascertain the data to be distributed. These solutions

cater for customers' deadline timing limitations but neglect both data time coherence and the employment of prevailing real-

time systems.

Embedded sensor networks have been a significant focus of research efforts concerning data dissemination. Although

the work presented below offers significant insights into addressing data distribution issues in sensor networks, it fails to

account for the real-time nature of both the applications and data. In other words, neither time limits for data supply nor time

coherence of the data are maintained. A study by Zervopoulos et al. [17] on real-time data dissemination was conducted at

the University of Virginia (UVa) regarding wireless sensor networks. This work addressed the time limits of requests.

Furthermore, time validity is acknowledged in that data levels are presented prior to their expiration, accompanied by

appropriate confidence levels. Nonetheless, it does not guarantee that the information is time-valid upon arrival to the

requester.

Critical findings during the evaluation of the DDS communication system indicated how variances in network situations

and QoS settings manifest in DDS performance, especially in terms of packet loss and delay. The results indicate that when

it comes to best effort QoS settings it only showed a few drops indicating that DDS can provide quality traffic assurances in

less congested networks with controlled environments. Communication was over Ethernet in both unicast and multicast

mode and this generally supported reliable data delivery. But multicast transmission showed a little more packet loss rate.

Volume 1, 2025, Pages 01-10 Elaris Computing Nexus

| Regular Article | Open Access

9

Almadani et al. [18] concluded that multicast in DDS behaves poorly when the subscriber load becomes high and there are

dynamic changes occurring in the network. Their study had shown that correct implementation of multicast is critical to the

preservation of reliability especially in large or dense networks.

Latency analysis identified the importance of QoS policies in terms of influencing responsiveness of communications.

Custom configuration options like B10TKL and R10TKL resulted in detectable differences in latency, indicating that these

settings should be adjusted to meet application specific timing needs. The effect of QoS on latency has been quite well

analyzed by Zhu et al. [19], where he has observed that DDS enhances the control of delivery guarantees and this fact greatly

affects the timing behavior in distributed systems. The results hereby support the submission that QoS tuning is important

in ensuring stability in performance, particularly in real-time environments.

Furthermore, the differences in the latency with different platforms also demonstrate the significance of the operating

system on which it runs and the hardware. The findings showed that Linux performed steadily compared to macOS, and that

Raspberry Pi systems were highly competitive in terms of latency in certain configurations. This observation reaffirms the

finding of An et al. [20], which illustrated that the execution environment is also a key factor in the performance of a real-

time middleware. Their work highlighted that the system-level delays could not be disregarded in performance-sensitive

systems even though middleware such as the DDS was used.

VI. CONCLUSION

The assessment of DDS middleware under different network topologies and various values of QoS parameters highlights

the importance of those parameters in determining the latency and packet loss. Although Ethernet connections provide more

stable results, Wi-Fi connections provide acceptable communication results when properly optimized QoS settings are

established but these connections have a greater level of variability in delays. Moreover, the involvement of different

operating systems revealed certain performance inconsistency, where Linux-based computers produced comparatively better

results than macOS and Raspberry Pi OS. These observations lead to the conclusion about the need in system-level

improvements and how real-time operating systems can help one substantially improve DDS performance in a real-time

application.

CRediT Author Statement

The author reviewed the results and approved the final version of the manuscript.

Data Availability

The datasets generated during the current study are available from the corresponding author upon reasonable request.

Conflicts of Interests

The authors declare that they have no conflicts of interest regarding the publication of this paper.

Funding

No funding was received for conducting this research.

Competing Interests

The authors declare no competing interests.

References

[1]. W.-Y. Liang, Y. Yuan, and H.-J. Lin, “A performance study on the throughput and latency of Zenoh, MQTT, Kafka, and DDS,” arXiv (Cornell
University), Jan. 2023, doi: 10.48550/arxiv.2303.09419.

[2]. L. J. Dust, E. Persson, M. Ekstrom, S. Mubeen, and E. Dean, “Quantitative analysis of communication handling for centralized multi-agent robot

systems using ROS2,” 2022 IEEE 20th International Conference on Industrial Informatics (INDIN), pp. 624–629, Jul. 2022,
doi: 10.1109/indin51773.2022.9976160.

[3]. K. Krinkin, A. Filatov, A. Filatov, O. Kurishev, and A. Lyanguzov, “Data Distribution Services Performance Evaluation Framework,” 2018 22nd

Conference of Open Innovations Association (FRUCT), pp. 94–100, May 2018, doi: 10.23919/fruct.2018.8468297.
[4]. R. Fujdiak., “Security and Performance Trade-offs for Data Distribution Service in Flying Ad-Hoc Networks,” 2019 11th International Congress

on Ultra-Modern Telecommunications and Control Systems and Workshops (ICUMT), pp. 1–5, Oct. 2019,
doi: 10.1109/icumt48472.2019.8970670.

[5]. V. Bode, C. Trinitis, M. Schulz, D. Buettner, and T. Preclik, “DDS Implementations as Real-Time Middleware – A Systematic Evaluation,” 2023

IEEE 29th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), pp. 186–195, Aug. 2023,
doi: 10.1109/rtcsa58653.2023.00030.

[6]. R. Endeley, T. Fleming, N. Jin, G. Fehringer, and S. Cammish, “A Smart Gateway Enabling OPC UA and DDS Interoperability,” 2019 IEEE

SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big
Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pp. 88–93, Aug. 2019,

doi: 10.1109/smartworld-uic-atc-scalcom-iop-sci.2019.00058.

[7]. F. B. Cheikh, M. A. Mastouri, and S. Hasnaoui, “Implementing a Real-Time Middleware Based on DDS for the Cooperative Vehicle
Infrastructure Systems,” 2010 6th International Conference on Wireless and Mobile Communications, pp. 492–497, Sep. 2010,

doi: 10.1109/icwmc.2010.49.

Volume 1, 2025, Pages 01-10 Elaris Computing Nexus

| Regular Article | Open Access

10

[8]. L. Bertaux, A. Hakiri, S. Medjiah, P. Berthou, and S. Abdellatif, “A DDS/SDN Based Communication System for Efficient Support of Dynamic

Distributed Real-Time Applications,” 2014 IEEE/ACM 18th International Symposium on Distributed Simulation and Real Time Applications,
pp. 77–84, Oct. 2014, doi: 10.1109/ds-rt.2014.18.

[9]. H. A. Putra and D.-S. Kim, “Node discovery scheme of DDS for combat management system,” Computer Standards & Interfaces, vol. 37, pp.

20–28, Jun. 2014, doi: 10.1016/j.csi.2014.05.002.
[10]. A. Alaerjan, “Formalizing the semantics of DDS QOS policies for improved communications in distributed smart grid applications,” Electronics,

vol. 12, no. 10, p. 2246, May 2023, doi: 10.3390/electronics12102246.

[11]. K. An, S. Pradhan, F. Caglar, and A. Gokhale, “A publish/subscribe middleware for dependable and real-time resource monitoring in the cloud,”
SDMCMM ’12: Proceedings of the Workshop on Secure and Dependable Middleware for Cloud Monitoring and Management, pp. 1–6, Dec.

2012, doi: 10.1145/2405186.2405189.

[12]. C. O’Ryan, F. Kuhns, D. C. Schmidt, O. Othman, and J. Parsons, “The design and performance of a pluggable protocols framework for Real-
Time Distributed Object Computing middleware,” in Lecture notes in computer science, 2000, pp. 372–395. doi: 10.1007/3-540-45559-0_19.

[13]. M. Carrascosa-Zamacois, G. Geraci, E. Knightly, and B. Bellalta, “Wi-Fi Multi-Link operation: An experimental study of latency and

throughput,” IEEE/ACM Transactions on Networking, vol. 32, no. 1, pp. 308–322, Jun. 2023, doi: 10.1109/tnet.2023.3283154.
[14]. A. Saifullah, Y. Xu, C. Lu, and Y. Chen, “Real-Time Scheduling for WirelessHART Networks,” 2010 31st IEEE Real-Time Systems Symposium,

Nov. 2010, doi: 10.1109/rtss.2010.41.

[15]. D. Aksoy and M. Franklin, “Scheduling for large-scale on-demand data broadcasting,” Proceedings. IEEE INFOCOM ’98, the Conference on

Computer Communications. Seventeenth Annual Joint Conference of the IEEE Computer and Communications Societies. Gateway to the 21st

Century (Cat. No.98, vol. 2, pp. 651–659, Nov. 2002, doi: 10.1109/infcom.1998.665086.

[16]. K. A. Hawick, P. D. Coddington, and H. A. James, “Distributed frameworks and parallel algorithms for processing large-scale geographic data,”
Parallel Computing, vol. 29, no. 10, pp. 1297–1333, Sep. 2003, doi: 10.1016/j.parco.2003.04.001.

[17]. A. Zervopoulos et al., “Wireless sensor network synchronization for precision agriculture applications,” Agriculture, vol. 10, no. 3, p. 89, Mar.

2020, doi: 10.3390/agriculture10030089.
[18]. B. Almadani, M. N. Bajwa, S.-H. Yang, and A.-W. A. Saif, “Performance Evaluation of DDS-Based Middleware over Wireless Channel for

Reconfigurable Manufacturing Systems,” International Journal of Distributed Sensor Networks, vol. 11, no. 7, p. 863123, Jul. 2015,

doi: 10.1155/2015/863123.
[19]. B. Li, Y. Zhu, X. Yao, C. Jiang, K. Lu, and Z. Sun, “Enabling deterministic transmission for DDS by leveraging IEEE 802.1Qbv time-sensitive

networking,” Computer Networks, vol. 261, p. 111128, Feb. 2025, doi: 10.1016/j.comnet.2025.111128.

[20]. K. An, S. Shekhar, F. Caglar, A. Gokhale, and S. Sastry, “A cloud middleware for assuring performance and high availability of soft real-time
applications,” Journal of Systems Architecture, vol. 60, no. 9, pp. 757–769, Feb. 2014, doi: 10.1016/j.sysarc.2014.01.009.

Publisher’s note: The publisher remains neutral with regard to jurisdictional claims in published maps and institutional

affiliations. The content is solely the responsibility of the authors and does not necessarily reflect the views of the publisher.

