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Abstract – This article presents a performance analysis of the DDS middleware, focusing on packet loss and delay across 

various Quality of Service (QoS) configurations and network modes. A testbed was established with three physical nodes 

(Mac13, Mac15, and Raspberry Pi4) utilizing Gigabit Ethernet and Wi-Fi interfaces to configure diverse operational 

conditions. These experiments were conducted across an Ethernet and a 5 GHz WiFi network to evaluate the performance 

of DDS under deterministic and probabilistic network settings. A series of experiments were conducted utilizing various 

payload sizes (ranging from 92 to 1024 bytes) and distinct Quality of Service configurations, including Best Effort, 

B2STKA, R10TKL, and B10TKL. The results provide a summary of the timing of packet loss, the impact of QoS 

regulations on latency, and the performance trade-offs among operating systems (Linux, macOS, and Raspberry Pi OS). 

Keywords – Data Distribution Service, Packet Loss, Latency, Quality of Service, Network Performance, Operating 

Systems, Real-Time Systems, Ethernet, Wi-Fi, Middleware. 

I.  INTRODUCTION 

Reliable Communications in distributed frameworks necessitate the participation of a middleware, communication channel, 

and an application. The program executes core functionalities and often assumes one of two critical functions: server or 

client. Irrespective of the function, the application may function as either a receiver and a transmitter (such as a client 

receiving feedback, or transmitting requests, correspondingly. The application counterparts interact over the communication 

channel, sometimes using the system middleware, which encompasses a collection of services situated above the network or 

under the application layer, often enabling dependable communication and coordination among dispersed application peers 

(e.g., RSocket and FSocket). Middleware generally offers application developers elevated programming abstractions (e.g., 

using remote items in lieu of sockets) and can also furnish an intermediary broker to dissociate the connection between 

receiver and sender (e.g., ZeroMQ), among other options. 

The Data Distributed Service (DDS) is an official protocol established by the OMG (object management group), widely 

utilized in embedded frameworks, particularly within aerospace, military sectors, and industrial automation. DDS delineates 

an API intended for facilitating real-time data dissemination. It employs a publish-subscribe (Pub/Sub) communication 

mechanism and accommodates both data-object oriented data structures and messaging structures. Over time, DDS has 

progressed via several revisions and additions, including both commercial and open-source implementation. Numerous 

application sectors are embracing it, including smart grid, healthcare, military, aerospace, autonomous systems, industrial 

IoT, and robotics. Table 1 enumerates some notable DDS middleware systems currently available. 
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DDS utilizes a data-oriented Pub/Sub system to provide efficient and reliable communications in instantaneous, mission-

based, and diverse networked systems. It simplifies the intricacies of communication control, decreasing model 

interdependence while improving reliability and adaptability via wrapping. DDS enhances data compatibility by 

accommodating many formats, such as OMG IDL (Interface Definition Language) and XML (Extensible Markup 

Language). Moreover, it is interoperable with UDP and TCP socked, facilitating efficient and flexible data transfer. It has 

comprehensive QoS standards that accommodate many communication topologies, including the specification of data 

transfer periods and the activation of temporal-event triggers. Table 2 delineates significant milestones in the growth of 

DDS middleware, spanning from the original 2004 standardization to the most recent improvements in 2024.  

Table 1. Major DDS Middleware Technologies 

Authors Middleware 

Name 

Release 

Year 

Version Free & Open 

Source 

Company/Organization 

Liang, Yuan, and 

Lin, [1] 
Cyclone DDS May. 2024 0.10.5 Yes 

Eclipse Foundation (via 

ZettaScale) 

Dust et al. [2] GurumDDS - 3.2.0 No GurumNetworks 

Krinkin et al. [3] 
Vortex 

OpenSplice 
Mar. 2021 6.9.0 Yes ADLINK Technology 

Fujdiak et al. [4] CoreDX DDS 2020 5.0.0 No Twin Oaks Computing 

Bode et al. [5] Fast DDS Mar. 2025 3.2.0 Yes eProsima 

Table 2. Sequential Chronology of DDS Evolution 

Year Milestones 

2004 OMG's first DDS 1.0 release. 

2006 DDS 1.2 protocol is created; initial industrial application starts. 

2007 RTI introduces DDS middleware, which improves industrial application scalability. 

2008–2010 
DDS advances interest in aerospace and military due to its reduced latency 

communications.  Initial use of IoT and intelligent grids starts. 

2009 Initial ROS distribution launched: Mango Tango. 

2010 ROS 1 launched. 

2010 ROS employs DDS principles implicitly through integration layers. 

2012 
OMG released DDS v1.4, which has enhanced dynamic discovery capabilities and QoS 

protocols. 

2014 
Commencement of DDS Security Protocol Design. ROS 2 designates DDS as the standard 

middleware, enhancing acceptance in robotics and automations. 

2015 DDSI-RTPS 2.20 released, enhancing real-time scalability. 

2016 DDS used in driverless cars for instantaneous communications. 

2017 Release of ROS 2, which formally designates DDS as the main middleware. 

2018 

Secure DDS version 1.1 has been finished, including encryption, access control, and 

authentication features.  The ROS 2 “Ardent Apalone” version incorporates DDS, 

supplanting the centralized design of ROS 1.  Prominent DDS providers (OpenDDS, Fast 

DDS, and RTI Connext) enhance their support for autonomous systems and IoT. 

2019 
Eclipse Cyclone DDS becomes the standard ROS 2 middleware and is extensively used in 

automations and robotics. 

2020 

X-Types v1.3, with flexible data structures, published to provide scalability in DDS 

communications.  The application of DDS has broadened in self-driving cars, cloud-end-

end fusion systems, intelligent grids, and drones for industrial robots. 

2021 DDS security used in military robots and UAV swarms to mitigate rogue node assaults. 

2023 
FogROS2 Scheduler/Controller utilizes DDS to provide safe worldwide networking in 

decentralized robotics. 

2023 
Research emphasizes the latency-based trade-offs associated with implementing DDS 

privacy in real-time networks. 

2024 

Recent DDS updates (e.g., Fast DDS 3.2, RTI Connext 7.4) provide minimal delay and 

improved compatibility, accommodating ML/AI pipelines for real-time inferences and 

remote robotic learning. 

 

Research on DDS and OPC UA for compatibility is now underway. Endeley et al. [6] introduced an intelligent gateway 

to facilitate compatibility between DDS and OPC UA within an IIoT context. The OPC UA function suit is integrated via 

the intelligent gateway, facilitating communication between DDS and OPC UA. Nonetheless, it is confined to OPC UA and 

lacks support for OPC UA Pub-Sub. 
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Cheikh, Mastouri, and Hasnaoui [7] advocated for the employment of data-centric middleware to facilitate collaborative 

vehicular models for vehicle-to-infrastructure or V2V interaction. Their suggested data-centric middleware utilizes the Pub-

Sub concept and incorporate QoS capability. They offered a comprehensive distributed architecture using a DDS as an 

embedded lab framework for avionics. The proposed system enables the evaluation of modular avionics alongside the whole 

model, which includes simulated entities and actual hardware, by integrating several communication bus protocols and 

enhancing adaptability via data gateways and DDS. They also presented a DDS gateway design facilitating interaction across 

DDS regions for extensive CPS (cyber-physical systems). Their design has four primary elements: network module, routing 

manager, topic manager, and interface module, along with a mechanism to mitigate blocks via sequential access. 

The aforementioned studies indicate that DDS is used across several domains, such as IIoT, automotive, avionics, and 

CPS, highlighting the increasing significance of connectivity and interoperability across diverse systems. Furthermore, the 

majority of current research emphasizes gateways for DDS and OPC UA, with less consideration for scalability. Our work 

focuses on the systematic comparison of communication capabilities of DDS middleware in different network scenarios and 

profiles of Quality of Service (QoS). Through structured experimentation across several hardware platforms and operating 

systems, the experiment seeks to measure core performance variables like packet loss and latency. 

The remaining sections of this study is organized in the following manner: Section II provides a background study of our 

work, highlighting the effect of QoS policies on real-time communication, and comparative network studies across different 

protocols and platforms. Section III describes our experimental architecture, data collection, as well as QoS profiles and 

system configuration. Section IV and V provide a detailed discussion of our findings. Lastly, Section VI concludes the study 

and highlights the significance of evaluating DDS middleware across various network setups and QoS profiles, which impact 

packet loss and latency.  

II.  BACKGROUND STUDY 

Impact of QoS Policies On Real-Time Communication 

Study on validating QoS policies for DDS is scarce. From a model-riven viewpoint, the specification of QoS policies is a 

component of DDS architecture modeling. This section summarizes current research in DDS modeling. We also examine 

several studies on the integration of DDStosmart grids. Bertaux et al. [8] examined the employment of DDS QoS rules to 

fulfill the quality needs of real-time systems comprehensively. They specifically concentrate on quality rules specification 

for data availability and latency using the MARTE (modeling and analysis of real-time embedded systems) framework. In 

this paper, the significance of QoS policy modeling in DDS is comprehensively elucidated. Their findings indicate that both 

the growth process and the quality of communication may be enhanced. 

The work by Putra and Kim [9] advocated customizing the DDS participant discovery for a combat system depending 

on the system's attributes and needs. The customized model interacts with several levels in DDS, including those near to the 

discovery system and more remote ones, such as the interface layer. They suggested a model-based methodology for tailoring 

DDS to accommodate WSNs. A layer was established underneath DCPS in DDS to facilitate the adoption of DDS for WSNs. 

In their research [10], Alaerjan identified the deficiencies in DCPS to enhance DDS standard coverage using UML. The 

enhanced model serves as the foundation for developing flexible DDS to accommodate nodes with constrained 

computational resources.  

 
Fig 1. UML Flowchart Illustrating the DDS Data-Oriented Publish-Subscribe Interfaces 

Fig. 1 depicts the comprehensive data-centric Pub-Sub paradigm, including the following entities: Topic, Subscriber, 

Publisher, DataReader, DataWriter, and Domain Participant. All these entities inherit from Entity, signifying their capacity 

to be set by QoS rules, enabled, receive event notifications via listener objects, and accommodate situations that the 

application may await. Every entity base class specialization has a matching dedicated receiver and an entity of appropriate 

QoSPolicy settings. The publisher denotes the entities accountable for data dissemination. A Publisher can disseminate data 

of several forms. A DataWriter serves as a keyed interface to a Pub; participants employ DataWriter(s) to convey the value 

<<entity>> 

Subscriber 

<<entity>> 

Publisher 

    Every <<entity>> has  

1. Listener 

2. StatusCondition and Status List 

3. QosPolicy list 
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and modifications of data of a certain form. Upon receipt of novel data values, the Publisher is responsible for deciding the 

appropriate timing for issuing the associated message and executing the release, in accordance with its QoS, the QoS 

associated with the relevant DataWriter, or/and its internal condition. 

Certain QoS regulations are now implemented in several Pub-Sub systems or models, including CORBA Notification 

Service, Distributed Asynchronous Collections, and Java Message Service. This pertains to message dependability, message 

priority, earliest delivery time, expiration time, message ordering, or duplicate message identification, for example. These 

QoS criteria may be supported or unsupported, depending upon the architecture. To our knowledge, QoS factors like as loss 

ratio, jitter, availability, bandwidth, and latency, extensively examined in the direct communication framework, are 

insufficiently addressed in Pub-Sub models.  

An et al. [11] review various QoS strategies influenced by fluctuations in network and computing resources, as well as 

the automated configuration of Pub/Sub intermediary software in cloud settings. The suggested method modifies the network 

transport platform to synchronize with the middleware, addressing QoS configuration challenges in DRE (distributed real-

time embedded) models inside cloud settings. The methodology employs ANN techniques to dynamically ascertain the 

appropriate transport channel for the Pub/Sub intermediary software after the execution of the DRE model. ANN instruments 

are learned with data settings to optimize QoS and forecast feedback duration required in DRE models. The method 

employed by the middleware employed the ANT (adaptive network transports) architecture to choose the optimal transport 

protocol, considering different QoS factors in relation to the availability of computing power. 

Comparative Network Studies Across Platforms and Protocols 

According to O’Ryan et al. [12], the selection of an operating system has a major influence on the performance of 

middleware, especially in real-time and distributed applications. They analyzed real-time communication protocols and 

found that Linux, due to its monolithic kernel and its full customization capabilities, is much faster in situations that promote 

low latency, high throughput communication. Because Linux supports explicit thread handling and core binding, it can be 

particularly useful to middleware that performs high-frequency messaging or real-time data flow. MacOS, meanwhile, is 

stable and easy to work with but lacks versatility in such optimizations and Raspberry Pi OS (a lightweight Linux operating 

system) is suitable in terms of edge execution due to affordably priced, but ultimately restricted by hardware constraints. 

Middlewares also rely heavily on the type of network they use. The post-processing data will be based on Ethernet 

connections as these connections offer better stability, lower latency, and less packet loss than Wi-Fi connections, as 

mentioned by Carrascosa-Zamacois et al. [13]. The benefit of Wi-Fi, its convenience, comes at the cost of variable latency 

and increased interference susceptibility, and these factors can negatively impact middleware performance, particularly in 

applications where timely and reliable data delivery are required. This can also be inferred in the IoT middleware 

benchmarks, where Ethernet is more capable of greater throughput and consistent performance. 

Transport modes, including unicast and multicast also affect middleware scalability and resource demands. Unicast is 

compatible and reliable, in that dedicated streams of data can be dedicated to each client, although the resource needs are 

linear with the number of clients. Multicast, in contrast supports efficient one-to-many communication, lowering server and 

network load with shared communication. Nevertheless, the use of multicast requires network architecture support and OS, 

and can be less dynamic or complicated in heterogeneous or wireless networks. Collectively, these works express that 

optimal middleware performance is obtained when there is a specific mapping of OS, network type and transport mode to 

application demands and deployment context. 

III.  DATA AND METHODS 

To objectively analyze the communication performance of the DDS middleware, this study presented an experimental 

platform that included carefully controlled hardware platforms, network topologies and stacked software layers. The goal of 

this part was to record the packet behavior in real time, the change in latency and the packet loss patterns using appropriate 

data collection techniques and Industry standard analysis tools based on different QoS configurations. 

Experimental Architecture 

The hardware platform comprised three physical nodes, a publishing workstation (Mac13), a subscribing workstation 

(Mac15) and a Raspberry Pi 4 Model B. Every node was capable of Gigabit Ethernet interface and 5 GHz wireless LAN. 

The experiments were performed both over Ethernet and Wi-Fi to model different operating environments, e.g., deterministic 

links with Ethernet and probabilistic links in the case of Wi-Fi. The machines were run with macOS Ventura (v13.6.5), the 

Linux distribution of Ubuntu 22.04 LTS, and the Raspberry Pi distribution (Debian-based), providing a wide range of 

execution environment. 

The communication structure between the DDS was implemented based on eProsima Fast DDS v2.10 that supported 

dynamic QoS policy setup, participant discovery, and real-time publish-subscribe. Wireshark v4.2 was used as the main 

packet capture application with the following filters frame.len == 194 being used to narrow down and capture DDS specific 
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packets. In each test uniform sized data packets (payloads of 92 to 1024 bytes) were published at a uniform interval, and the 

transmission integrity was measured on 10,000 iterations. 

Data Collection and Measurement 

The key performance indicators were packet loss ratio and end-to-end latency, which were captured with timestamps placed 

in DDS message headers and trace packet information on the system level. The ratio was calculated as the packet loss ratio 

(PLR) by comparing total number of published packets 𝑃𝑡𝑜𝑡𝑎𝑙  with successful packets received 𝑃𝑟𝑒𝑐𝑣 in Eq. (1). 

 PLR =
𝑃𝑡𝑜𝑡𝑎𝑙−𝑃𝑟𝑒𝑐𝑣

𝑃𝑡𝑜𝑡𝑎𝑙
× 100    (1) 

Latency (𝐿) was defined as the time arrival difference between the DDS message timestamp 𝑇𝑝𝑢𝑏
(𝑖)

 of the publisher node 

and the timestamp of its reception 𝑇𝑠𝑢𝑏
(𝑖)

 at the subscriber node. This is expressed as Eq. (2) where i varies to every message. 

 𝐿𝑖 = 𝑇𝑠𝑢𝑏
(𝑖)

− 𝑇𝑝𝑢𝑏
(𝑖)

,      for 𝑖 = 1,2, … , 𝑁 − 𝑊 + 1    (2) 

The short-term jitter was solved by computing a rolling average latency measure with window of size 𝑊 as in Eq. (3). 

 𝐿̅𝑗 =
1

𝑊
∑ 𝐿𝑘       where 𝑗 = 1,2, … , 𝑁 − 𝑊 + 1 

𝑗+𝑊−1
𝑘=𝑗     (3) 

The strategy ironizes out high signal fluctuations and allows displaying long-term structural latency tendencies. 

QoS Profiles and System Configurations 

The DDS middleware was both set with default and custom QoS settings. In particular, they contested the following 

configurations: Best Effort, B10TKL, R10TKL and B2STKA where reliability, durability, and history depth combinations 

vary in each case. These QoS profiles were then plotted to situations in which low latency or high reliability were prioritized 

as per application objective. The test procedure contained 10 sets in each of the configurations and each of the sets involved 

10,000 messages transmitted. A restart of the system was made between tests to counteract cumulative memory or buffer 

effects. Table 3 summarizes the details of testing conditions used in each of the test profiles. 

Table 3. Test Configurations and QoS Settings 

Test ID Network Type OS Platform QoS Profile Payload Size 

(Bytes) 

Iterations Interval (ms) 

T1 Ethernet Linux Best Effort 194 10,000 10 

T2 Wi-Fi (5 GHz) macOS B10TKL 194 10,000 10 

T3 Ethernet Raspberry Pi R10TKL 194 10,000 10 

T4 Wi-Fi (5 GHz) Linux B2STKA 194 10,000 10 

T5 Ethernet macOS B10TKL 1024 10,000 5 

 

Collisions, jitter and dropped frames were observed in network interfaces with a particular focus on multicast group 

results and interface queue latencies. Latency anomalies were matched with the operating system kernel logs where 

measurement validity was addressed. 

IV. RESULTS  

We evaluate the incidence of communication packet delay, considering the data volume and rate specifications of the users’ 

application. We evaluated the efficacy of the DDS communication structure using DDS intermediary software via tests 

designed to assess network performance and detect occurrences of packet loss. We assessed the efficacy of the Ethernet 

protocol by transmitting successive batches of DDS data packets and quantifying the packet delay from the Pub to the Sub. 

We repeated the procedure for both multicast and unicast setups to ascertain the permissible degree of frame delay that might 

not hinder the application's efficiency. Fig. 2 and Fig. 3 depict the findings, demonstrating the duration of the trial in 

correlation with the incidence of packet delay, as documented by Wireshark. The trials were performed on shared-time 

servers, indicating that implementation on systems with real-time OS (operating systems) might enhance efficiency metrics 

further. 

Fig. 2 presents a Wireshark screenshot of client data transferred over the DDS standard. Fig. 3 illustrates the DDS 

standard frames, which were captured and processed protocol frames according to their packet size in Wireshark. The 

efficiency analysis shown in Fig. 4 examines the correlation between test iterations and packet delay for DDS functioning 

under a best-effort QoS setting. Furthermore, Fig. 5 presents an examination of the frequency of dropped data packets and 

the reliability of the DDS 5 GHz wireless link. It presents the exact technological specifications of the wireless interface 

employed by both the publisher and subscriber. The noted associations between the received and released data in DDS 

transport suggests a minimal packet loss rate, possibly attributable to the absence of networking traffic in the local test 

setting. 
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Fig 2. Client data with 92 Bytes in The Retrieved DDS Protocol, As Analyzed by Wireshark 

 
Fig 3. Obtained DDS Protocol Packets; Wireshark filters (frame.len==194) 

 

Fig 4.  Best-Effort QoS and DDS 
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Fig 5. Packet Delay and Trustworthiness Efficiency for DDS On 5 Ghz Wifi with A Best Effort Qos Configuration 

Fig. 6 and Fig. 7 provide a detailed examination of the rolling average latency, taking into account various QoS rules, 

on 2 workstations designated as publisher (Mac13) and subscriber (Mac15). The statistics depict the fluctuations in latency 

patterns over different packet amounts, highlighting the impacts of various QoS rules, including R10TKL and B10TKL. 

Latency, quantified in ms, assesses the immediate efficiency of the communication channel. 

 

Fig 6. Analysis of Rolling Average Latency Patterns Across Various QoS Rules in a Pub/Sub Framework 
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Fig 7. Comparison of Average Latency Trends Relative to Qos Policy Between Macos and Linux, As Well As 

Between Raspberry Pi and Macos Computers 

Fig. 7 presents a bar chart illustrating latency averages, offering a clear depiction of the differing efficiency across various 

groupings of OS across many QoS situations, including B2STKA, R10TKL, and B10TKL. The findings illustrate the delay 

anticipated when deploying these systems under specified QoS conditions. The results indicate that QoS settings 

substantially affect the delay encountered by the systems. B10TKL demonstrates differing latencies when utilized with 

MacOS and Linux in contrast to MacOS and Raspberry Pi, as seen in Fig. 7. These findings are crucial for enhancing real-

time connectivity standards in microgrid environments, where rapid data transmission is critical. 

V. DISCUSSION 

The dissemination of real-time data has lately become a significant study domain. A workshop focused on the subject “1st 

International Workshop on Data Distribution in Real-Time Systems (DDRTS'2003)” took place in May 2003. The OMG 

enhances research initiatives by normalizing data delivery inside an intermediary service. The formulation of dynamic 

scheduling techniques in data-centric Pub-Sub systems operating on real-time networks is a significant research challenge, 

and in recent years, several teams and businesses have actively engaged in this area. The issue of planning the transmission 

of real-time data is addressed in [14]. It offers a refined variant of the Longest-processing-time-first (LPT), which minimizes 

overhead. 

Comparable research [15] delineates a Broadcast on Demand methodology that organizes the broadcast using the 1st 

deadline first, hybrid, or periodic scheduling techniques. The study presented in [16] outlines a conjectural data distribution 

service, which leverages temporal and geographic reference locality to ascertain the data to be distributed. These solutions 

cater for customers' deadline timing limitations but neglect both data time coherence and the employment of prevailing real-

time systems.  

Embedded sensor networks have been a significant focus of research efforts concerning data dissemination. Although 

the work presented below offers significant insights into addressing data distribution issues in sensor networks, it fails to 

account for the real-time nature of both the applications and data. In other words, neither time limits for data supply nor time 

coherence of the data are maintained. A study by Zervopoulos et al. [17] on real-time data dissemination was conducted at 

the University of Virginia (UVa) regarding wireless sensor networks. This work addressed the time limits of requests. 

Furthermore, time validity is acknowledged in that data levels are presented prior to their expiration, accompanied by 

appropriate confidence levels. Nonetheless, it does not guarantee that the information is time-valid upon arrival to the 

requester. 

Critical findings during the evaluation of the DDS communication system indicated how variances in network situations 

and QoS settings manifest in DDS performance, especially in terms of packet loss and delay. The results indicate that when 

it comes to best effort QoS settings it only showed a few drops indicating that DDS can provide quality traffic assurances in 

less congested networks with controlled environments. Communication was over Ethernet in both unicast and multicast 

mode and this generally supported reliable data delivery. But multicast transmission showed a little more packet loss rate. 
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Almadani et al. [18] concluded that multicast in DDS behaves poorly when the subscriber load becomes high and there are 

dynamic changes occurring in the network. Their study had shown that correct implementation of multicast is critical to the 

preservation of reliability especially in large or dense networks. 

Latency analysis identified the importance of QoS policies in terms of influencing responsiveness of communications. 

Custom configuration options like B10TKL and R10TKL resulted in detectable differences in latency, indicating that these 

settings should be adjusted to meet application specific timing needs. The effect of QoS on latency has been quite well 

analyzed by Zhu et al. [19], where he has observed that DDS enhances the control of delivery guarantees and this fact greatly 

affects the timing behavior in distributed systems. The results hereby support the submission that QoS tuning is important 

in ensuring stability in performance, particularly in real-time environments. 

Furthermore, the differences in the latency with different platforms also demonstrate the significance of the operating 

system on which it runs and the hardware. The findings showed that Linux performed steadily compared to macOS, and that 

Raspberry Pi systems were highly competitive in terms of latency in certain configurations. This observation reaffirms the 

finding of An et al. [20], which illustrated that the execution environment is also a key factor in the performance of a real-

time middleware. Their work highlighted that the system-level delays could not be disregarded in performance-sensitive 

systems even though middleware such as the DDS was used. 

VI. CONCLUSION 

The assessment of DDS middleware under different network topologies and various values of QoS parameters highlights 

the importance of those parameters in determining the latency and packet loss. Although Ethernet connections provide more 

stable results, Wi-Fi connections provide acceptable communication results when properly optimized QoS settings are 

established but these connections have a greater level of variability in delays. Moreover, the involvement of different 

operating systems revealed certain performance inconsistency, where Linux-based computers produced comparatively better 

results than macOS and Raspberry Pi OS. These observations lead to the conclusion about the need in system-level 

improvements and how real-time operating systems can help one substantially improve DDS performance in a real-time 

application. 
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