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Abstract – This paper proposes an attempt to combine simulation and artificial intelligence (AI) to facilitate the operation 

of the LoRaWAN network. Our network parameters include transmit power, spreading factor, and coding rate, which we 

predict using deep learning (ANN, DNN, GRU), reinforcement learning (DQN, multi-agent RL), and ensemble strategies 

to find optimal parameters and maximize energy efficiency, packet success rate, and throughput. The approaches are tested 

through simulation with NS-3 and LoRaEnergySim platforms to validate them under realistic conditions of interference 

and traffic. Findings show that AI methods can substantially enhance resource allocation and conserve energy than the 

state-of-the-art methods, offering a solid framework of adaptive LoRaWAN network management. 

 

Keywords – Artificial Neural Networks (ANNs), Energy Efficiency (EE), Network Optimization, Resource Allocation, 

NS-3 Simulator, Ensemble Learning, AI-Driven Networks, Industrial IoT (IIoT). 

 

I. INTRODUCTION 

LoRaWAN is more recently suggested to support low-data-rate IoT implementations, which involve the delivery and 

collection of low-amount data across distances in many kilometers. LoRaWAN is 0.3-50 kbps, and the highest attainable 

information rate is dependent on the range of the receiver and the level of environmental interference. LoraWAN technology 

is designed to use less energy in order to overcome limitations of IoT devices energy supply. LoRaWAN operates within 

unauthorized frequency spectra, namely between 868 MHz to 900 MHz, which reduces authorization cost and makes the 

technology cost-efficient. Nonetheless, there are some regions where the transmission of low frequency is limited. Therefore, 

the LoRa Alliance has developed numerous regionalized frequency plans. 

Its core distinguishing feature is the high energy consumption of LoRaWAN. This is an important component of 

increasing the life cycle of edge devices. LoRa bridges are already expected to last a long period of 5 to 10 years with only 

little maintenance [1]. Power consumption is, therefore, a serious problem with LoRa connection. Many research questions 

are yet to be resolved to develop viable LoRa networks in terms of security, reliable transmission, resource allocation, and 

link coordination. Channel, BW (bandwidth), TP (transmission power), and SF (spreading factor) are the measures that 

control transmissions in LoRa technology. The change of these measures produces different transmission features. This can 

be used to improve concurrent transfers. Multi-accessibility and scalability are boosted whereby the available ecosystem is 

dynamically allocated of the right resources to the end devices depending on the type of installed ecosystem.  
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The IoT refers to a system of connected items and sensors, which collect, transfer, and process information. The prompt 

development of the IoT has facilitated the large-scale application of sensor networks in various areas, including 

environmental sciences, industrial processes, and intelligent cities. LoRaWANs have gained significant popularity as an IoT-

enabling technology due to their caability to achieve long-range communications with low amounts of energy usage, making 

them the preferred device of battery-powered sensors in large sensor systems. LoRaWAN leverages on unlicensed 

spectrums, a scalable and flexible alternative to IoT deployments, which necessitate system architecture to support many 

nodes in extended geographical ranges. 

The installations of the IoT of the large-scale demand energy efficiency (EE) and optimization of the efficiency of the 

network because of the rise in the number of nodes that are connected. Ensuring the long battery life of the IoT devices and 

maintaining stable throughput and low delay is a big challenge. The classical method as the classical ADR (Adaptive Data 

Rate) algorithm fails to adjust to the different networking and environmental conditions that usually provoke the 

insufficiency of resources distribution and a rise in power consumption. Moreover, these methodologies disregard the 

significance of ecological variabilities, interim reliance, which significantly matter in large-scale uses. It is these constraints 

that trigger the urge to create more sophisticated information-based solutions that can actively optimize network 

environments in real-time environments, and are prepared to cope with operational and environmental uncertainty. 

To identify the best transmission parameters and energy usage in LoRa networks, simulation frameworks are widely 

used. One of the most well-known simulation instruments in LoRa systems is LoRaSim, which highlights key concepts like 

systems collisions, spreading factors, as well as gateway coverage. A much more detailed modeling environment is provided 

by FloranO Maico Framework, which is also based on OMNeT++ simulation framework and the INET framework, with 

detailed models of communication latency, energy used, and network dynamics. Other simulators focus on specific aspects: 

MATLAB-based simulator has an option to test verified traffic impact but is proprietary, LoRaEnergySim is a simulator of 

energy use, sustaining ADR and dual-channel systems, and a LoRa/Sigfox simulator focuses on physical layer features. 

Despite their influence, these simulators focus on particular aspects of networks instead of comprehensive optimization of 

networks. 

The purpose of this paper is to design and experiment with a rich AI-based Simulation platform to optimize LoRaWAN 

systems. The network aims to maximize network parameters such as, energy efficiency, likelihood of a packet reaching the 

receiver, throughput, and network lifetime by incorporating data-oriented modelling with advanced reinforcement and deep 

learning algorithms. The fundamental research question to be answered in this study is: 

Research Question: How can AI methods be employed to encourage performance and resource allocation in 

LoRaWANs? 

The solution eliminates the weaknesses of more conservative solutions by enabling adaptive, predictive and collaborative 

decision-making on large-scale LoRaWAN implementations, which ultimately delivers smarter, energy-saving IoT 

environments. The remaining sections of this study have been organized in the following manner: Section II review prior 

works related to ML and deep learning application in LPWAN and LoRaWAN. Section III describes the data and methods 

used in this work, which integrate data modeling and preprocessing, AI-based networking optimization, 

supervised/unsupervised learning, and network simulations. Section IV analyzes the findings of our study highlighting the 

impact of various publications in presenting major techniques to optimize LoRaWAN. Lastly, Section V concludes our study 

highlighting how deep learning, ensemble algorithms, and reinforcement learning collaborate in optimizing the efficiency 

of LoRaWAN networks.  

 

II. RELATED WORK 

The integration of machine learning and deep learning applications into the Internet of Things sensor systems has 

revolutionized efficiency and energy efficiency optimization of these systems, particularly when used on large scales as 

reported by Shah et al. [2]. Machine learning and deep learning models are increasingly used in LPWANs (low-power wide-

area networks), and LoRaWAN, to address energy constraints, interference, and signal degradation challenges. With such 

systems where the range of communication is vast, and power consumption is minimal, a proper control over resources is 

required, making machine learning and deep learning the key to enabling real-time optimization. Applying machine learning 

methods, network measures, such as TP and SF, can be more dynamically adjusted to network states and, thus, have a 

significant impact on network efficiency and reduction in energy consumption. 

Hybrid methods were developed as proposed by Qamar et al. [6] utilizing artificial neural networks called Delay Bound 

and RkM-ANN (Reduced k-means with ANN). The DBRkM-ANN, which is an optimized version of k-means algorithm 

based on Artificial Neural Networks, improves the use of mobility to improve the data collection of a WSN. Their 

methodology resulted in system longevity and minimization of latency; however, validation was only done on modelling, 

lacking empirical experimentation. 

Table 1 outlines a group of studies being undertaken between 2020 and 2024 that deployed a varied array of deep learning 

and machine learning methods to improve the performance and energy-saving of LoRaWAN systems. The combination of 

these results demonstrates how advanced DL/ML tools have enhanced the total productivity of LoRaWAN networks and 

their energy efficiency. Despite the positive advances in the implementation of machine learning and deep learning methods 

to enhance LoRaWAN networks, they are often subjected to challenges that comprise of scalability, difficulty in real-time 

applications, and dependence on some hardware and datasets configurations. 
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Li, Yang, and Wang [7] realized that retransmissions of transmission and collisions increase energy consumption. In 

LoRa systems, therefore, appropriate choice of transmission characteristics such as transmission and channel energy play a 

significant role in improving the energy performance. However, the restricted processing power and memory of LoRa 

devices also make it challenging to use more traditional methods of selecting transmission parameters. Instead, they proposed 

a distributed RL-based (reinforcement learning)-based approach to transmission and channel energy selection that can be 

applied in the LoRa devices to improve their energy efficiency.  

Serati et al. [8] agree that their experimental results show that the method outperforms both fixed assignment, ADR-Lite 

(adaptive data rate low-complexity), and e -greedy-based methods in terms of transmission success rate and energy waste. 

Energy optimization of WSNs is a crucial field of research, and various approaches have been proposed to enhance both the 

network life cycle and Quality of Service (QoS). The use of RL in WSNs has aroused interest because of its ability to support 

dynamic and autonomous decision-making. Q-learning and SARSA reinforcement learning methods have been used to learn 

energy-saving adaptive routing and duty cycling. However, these techniques are limited by the slow convergence rates and 

the complexity of operating in a high-dimensional state space, limiting their usefulness in large wireless sensor networks.  

 

Table 1. Introduction to DL and ML Strategies to Advance Efficiency and Energy Usage 

Ref. Year 
ML/DL 

Technique 
Improvement Limitation 

Khan et 

al. [3] 

2020 RL 
Enhanced energy utilization informed 

by real-time circumstances. 

Significantly dependent on 

particular hardware 

configurations. 

2021 DNN, SVR 

Attained a 43% decrease in energy 

usage by the dynamic adjustment of 

transmission settings. 

Restricted scalability for 

extensive and more dynamic 

IoT ecosystems. 

2021 LSTM 

40% decrease in transmission 

expenses through data point prediction 

and minimization of redundant 

transmissions. 

Reliance on well calibrated 

thresholds for optimal 

reduction. 

2021 GB, RF 

Enhanced delivery rates and less 

energy usage via better SF 

assignment. 

Concentrated on simulated 

data with restricted practical 

applicability. 

Khairan et 

al. [4] 

2022 ANN-PSO 

Improved LoRa system efficacy in 

industrial contexts via RSSI and SNR 

improvement. 

Restricted to indoor industrial 

environments. 

2023 ML, RL 

25% decrease in energy use and 

enhanced PRR with the optimization 

of TP and SF. 

Intricate execution for practical 

scalability. 

2023 
MLR, RF, 

ANN, SVR 

Improved energy effectiveness by 

43.01%, attaining a 1.5661 dB SNR 

and 0.941 R2 score, surpassing 

conventional ADR methods. 

Challenges in incorporating 

environmental factors into 

real-time applications. 

Alkhayyal 

and 

Mostafa 

[5] 

2024 
RF, ARIMA, 

ANN 

Enhanced RSSI prediction with the 

incorporation of environmental 

parameters, optimizing energy 

consumption. 

Concentrated on linear 

dependence, with minimal 

investigation of nonlinear 

patterns. 

2024 RNN 
Enhanced throughput and lower 

energy use. 

Deployment is restricted to 

mountainous regions 

exclusively. 

2024 

MLR, Ridge, 

GAM, Lasso, 

ANN, RF, SVR 

47.1% decrease in energy use and 

enhanced PDR. 

Significant computational 

burden during training. 

2024 

ANN, DBRkM-

ANN, hybrid 

RkM-ANN, 

Decreased energy consumption and 

enhanced network longevity. 

Restricted generalizability 

resulting from insufficient 

validation with real-world data. 

 

Akram et al. [9] explore energy-efficient clustering and routing by implementing Deep Q Networks (DQN) and Actor-

Critic models. DQER (Deep Q-learning-driven Energy-aware Routing) has proven to be effective in optimizing routing 

algorithms that use less energy. Further studies include the use of multi-agent reinforcement learning (MARL) to devolve 

power management with sensor nodes. Recent DRA strategies have mainly focused on a single optimization objective, e.g. 

reducing power transmission or increasing network lifetime but ignore connections between energy efficiency, data accuracy 

and connectedness of systems. 
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Reinforcement Learning approaches, encompassing Deep Reinforcement Learning, Deep Q-Networks (DQN), and 

multi-agent RL, have been extensively employed to enhance adaptive data rates, resource allocation, and energy efficiency. 

They enable LoRaWAN networks to acquire optimal strategies in real time without explicit pre-programming.  

The networks based on LoRaWAN rely heavily on the adaptive information rate strategies to provide the best link 

stability and support the required end device density. To work, the solution should also be tuned according to the mobility 

level of each end device. In a bid to do this, there are different strategies developed to embrace the different levels of mobility 

of end devices, including mobile or fixed devices. Jahangiri and Rakha in [10] define and evaluate a new and effective 

methodology of measuring the end device mobility with the help of ML methods, specifically the SVM (support vector 

machine) supervised learning (SL) methodology.  

In this regard, the solution to the issue given by Ojo et al. [11] does not rely on the locational capabilities of the 

LoRaWAN systems; instead, it merely relies on the data that is always available at the LoRaWAN networking server. 

Additionally, the effectiveness of this method within a real LoRaWAN system is tested; the results offer clear evidence on 

the utility and dependability of the proposed machine learning model. 

 

III. DATA AND METHODS 

The paper uses a hybrid simulation and AI-based optimization of LoRaWAN networks. The methodology itself is divided 

into three main parts, which are data modeling and preprocessing, AI-based network optimization, and performance 

evaluation. Both components incorporate mathematical expressions to precisely specify network dynamics, optimization, 

and learning processes. 

 

Data Modeling and Preprocessing 

In order to describe the LoRaWAN network, we define the network as a collection of 𝑁 end devices {𝐸𝐷1, 𝐸𝐷2, . . . , 𝐸𝐷𝑁} 

interacting with 𝐺 gateways {𝐺𝑊1, . . . , 𝐺𝑊𝐺}. The devices send data after T time intervals. The network parameters are 

transmitting power (𝑃𝑖,𝑗), signal-to-noise ratio (𝑆𝑁𝑅𝑖,𝑗), coding rate (𝐶𝑅𝑖,𝑗), packet size (𝑆𝑖,𝑗), spreading factor (𝑆𝐹𝑖,𝑗). 

The normalized input vector for device 𝑖 at time 𝑗 determined using Eq. (1). 

 

 𝑥𝑖,𝑗 = [
𝑃𝑖,𝑗−𝑃𝑚𝑖𝑛

𝑃𝑚𝑎𝑥−𝑃𝑚𝑖𝑛
,

𝑆𝐹𝑖𝑗−𝑆𝐹𝑚𝑖𝑛

𝑆𝐹𝑚𝑎𝑥−𝑆𝐹𝑚𝑖𝑛
,

𝐶𝑅𝑖𝑗−𝐶𝑅𝑚𝑖𝑛

𝐶𝑅𝑚𝑎𝑥−𝐶𝑅𝑚𝑖𝑛
,

𝑅𝑆𝑆𝐼𝑖𝑗−𝑅𝑆𝑆𝐼𝑚𝑖𝑛

𝑅𝑆𝑆𝐼𝑚𝑎𝑥−𝑅𝑆𝑆𝐼𝑚𝑖𝑛
,

𝑆𝑁𝑅𝑖𝑗−𝑆𝑁𝑅𝑚𝑖𝑛

𝑆𝑁𝑅𝑚𝑎𝑥−𝑆𝑁𝑅𝑚𝑖𝑛
] (1) 

 

The energy consumption of each device 𝐸𝐷𝑖 over the observation window is modeled in Eq. (2).  

 

 𝐸𝑖 = ∑ (𝑃𝑖,𝑗
𝑡𝑥 ∙ 𝑡𝑖,𝑗

𝑡𝑥 + 𝑃𝑖,𝑗
𝑟𝑥 ∙ 𝑡𝑖,𝑗

𝑟𝑥 + 𝑃𝑖,𝑗
𝑖𝑑𝑙𝑒 ∙ 𝑡𝑖,𝑗

𝑖𝑑𝑙𝑒)𝑇
𝑗=1   (2) 

 

where 𝑡𝑖,𝑗
𝑡𝑥, 𝑡𝑖,𝑗

𝑟𝑥, and 𝑡𝑖,𝑗
𝑖𝑑𝑙𝑒  are the durations of transmission, reception, and idle states respectively. 

The packet delivery probability for a device is given by Eq. (3).  

 

 𝕡𝑠𝑢𝑐𝑐𝑒𝑠𝑠(𝐸𝐷𝑖 , 𝑗) = 1 − ∏ (1 − 𝑒−⋋𝑖,𝑗,𝑑𝑖,𝑘
𝛼 /𝑆𝑁𝑅𝑖,𝑗)    𝐺

𝑘=1  (3) 

 

where 𝑑𝑖,𝑘 is the distance from device 𝑖 to gateway 𝑘, 𝛼 is the path-loss exponent, and 𝜆𝑖,𝑗 is the interference factor at 

time 𝑗. 

 

AI-Based Network Optimization 

Deep Learning Models 

The deep learning model, including ANN, DNN, and GRU, is trained to predict optimal transmission parameters 𝑦𝑖,𝑗
𝑜𝑝𝑡

=

[𝑃𝑖,𝑗
𝑜𝑝𝑡

, 𝑆𝐹𝑖,𝑗
𝑜𝑝𝑡

, 𝐶𝑅𝑖,𝑗
𝑜𝑝𝑡

]. The prediction minimizes the MSE (mean squared error) between desired and predicted network 

performance metrics employing Eq. (4). 

 

 𝐿(𝜃) =
1

𝑁𝑇
∑ ∑ ‖𝑓𝜃(𝑥𝑖,𝑗) − 𝑦𝑖,𝑗

𝑜𝑝𝑡
‖

2

2
+⋋ ∑ ‖𝑊𝑙‖𝐹

2𝐿
𝑙=1

𝑇
𝑗=1

𝑁
𝑖=1  (4) 

 

where 𝑓𝜃 is the network function with parameters 𝜃, 𝑊𝑙 are the weight matrices of each layer 𝑙, 𝐿 is the total number of 

layers, and 𝜆 is a regularization factor. For GRU layers, the hidden state update computations include Eq. (5)-(7). 

 

 ℎ𝑡 = 𝓏𝑡 ⊙ ℎ𝑡−1 + (1 − 𝓏𝑡) ⊙ ℎ̃𝑡 (5) 

 

 ℎ̃𝑡 = tanh(𝑊ℎ𝑥𝑡 + 𝑈ℎ(𝑟𝑡 ⊙ ℎ𝑡−1) + 𝑏ℎ) (6) 

 

 𝓏𝑡 = 𝜎(𝑊𝓏𝑥𝑡 + 𝑈𝓏ℎ𝑡−1 + 𝑏𝓏),       𝑟𝑡 = 𝜎(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟) (7) 
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The network predicts the optimal power 𝑃𝑖,𝑗
𝑜𝑝𝑡

 and spreading factor 𝑆𝐹𝑖,𝑗
𝑜𝑝𝑡

 as Eq. (8).  

 

 [𝑃𝑖,𝑗
𝑜𝑝𝑡

, 𝑆𝐹𝑖,𝑗
𝑜𝑝𝑡

] = 𝑓𝜃(𝑥𝑖,𝑗) (8) 

 

Reinforcement Learning Models 

The network is designed as a MDP (Markov Decision Process) with 𝑠𝑡 denoting the states, 𝑎𝑡 as actions, and 𝑟𝑡 as rewards. 

The main purpose is to enhance the cumulative discounting reward using Eq. (9).  

 

 𝑅 = 𝔼[∑ 𝛾𝑡𝑟𝑡(𝑠𝑡 , 𝑎𝑡
𝑇
𝑡=0 ] (9) 

 

For DQN implementations, the Bellman equation governs the Q-value updates using Eq. (10).  

 

 𝑄(𝑠𝑡𝑎𝑡; 𝜃) ← 𝑄(𝑠𝑡𝑎𝑡; 𝜃) + 𝛼 [𝑟𝑡 + 𝛾 max
𝛼′

𝑄(𝑠𝑡+1, 𝑎′; 𝜃−) − 𝑄(𝑠𝑡𝑎𝑡; 𝜃)] (10) 

 

where 𝜃− are the target network parameters, 𝛼 is the learning level, and 𝛾 is the discounting factor. 

For multi-agent RL (MARL), with 𝑁 agents, the joint action-value function integrates Eq. (11) and (12).  

 

 𝑄𝑔𝑙𝑜𝑏𝑎𝑙(𝑠, 𝑎) = ∑ 𝑄𝑖(𝑠𝑖 , 𝑎𝑖 , 𝑎−𝑖
𝑁
𝑖=1 )     (11) 

 

 𝑎−𝑖 = [𝑎1, … , 𝑎𝑖−1, 𝑎𝑖+1, … , 𝑎𝑁]    (12) 

 

The reward for energy efficiency maximization is defined as Eq. (13).  

 

 𝑟𝑡
𝐸𝐸 =

∑ 𝑃𝑎𝑐𝑘𝑒𝑡𝑠𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑𝑖,𝑡
𝑁
𝑖=1

∑ 𝐸𝑖(𝑡)𝑁
𝑖=1

 (13) 

 

Supervised and Unsupervised Learning 

SL predicts packet arrival times and network load using Eq. (14).  

 

 arg min
𝐶

∑ ∑ ‖𝑥 − 𝜇𝑘‖2
2

𝑥∈𝐶𝑘
𝐾
𝑘=1  (14) 

 

where 𝐶𝑘 is the 𝑘-th cluster and 𝜇𝑘 is its centroid. Ensemble approaches integrate predictions obtained from numerous 

models to enhance robustness based on Eq. (15).  

 

 𝑦̂𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 = ∑ 𝑤𝑚
𝑀
𝑚=1 , 𝑦̂𝑚,   𝑤𝑖𝑡ℎ   ∑ 𝑤𝑚 = 1𝑀

𝑚=1  (15) 

 

Network Simulation and Performance Evaluation 

Simulations integrate AI models with NS-3 or LoRaEnergySim, examining metrics such as energy efficiency (EE), packet 

success rate (PSR), network lifetime (𝐿), and throughput (𝜂). 

Energy efficiency is defined using Eq. (16).  

 

 𝐸𝐸 =
∑ ∑ 𝑆𝑖,𝑗∙𝐴𝐶𝐾𝑖,𝑗

𝑇
𝑗=1

𝑁
𝑖=1

∑ 𝐸𝑖
𝑁
𝑖=1

 (16) 

 

Throughput is computed using Eq. (17).  

 

 𝜂 =
∑ ∑ 𝑆𝑖,𝑗∙𝐴𝐶𝐾𝑖,𝑗

𝑇
𝑗=1

𝑁
𝑖=1

𝑇∙∆𝑡
 (17) 

 

Network lifespan is the minimum duration until the initial device depletes its energy as using Eq. (18).  

 

 𝐿 =
𝑁

min
𝑖=1

𝐸𝑏𝑎𝑡𝑡𝑒𝑟𝑦,𝑖

∑ 𝑃𝑖,𝑗∙𝑡𝑖,𝑗
𝑇
𝑗=1

 (18) 

 

Packet collision probability is modeled using Eq. (19).  

 

 𝕡𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 = 1 − ∏ ∏ exp (−
⋋𝑖,𝑗𝑆𝑖,𝑗

∑ 𝑆𝑘,𝑗𝑘≠𝑖
)𝑇

𝑗=1
𝑁
𝑖=1  (19) 
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The simulations also account for interference, varying spreading factors, and channel allocation, enabling robust 

evaluation of AI-based optimization strategies under realistic conditions. 

 

IV. RESULTS AND DISCUSSION 

In this paper, many journal articles have been reviewed, presenting the latest strategies and techniques to optimize 

LoRaWAN. This included various deep learning, machine learning and reinforcement learning techniques and algorithms. 

Various scholars have used numerous datasets and simulations in their studies. The deep learning and neural network 

methods have highlighted vital developments in streamlining numerous segments of LoRaWAN systems. In a specific 

example, Ali et al. in [12] applied an artificial neural network to optimize transmission power, and Chen et al. [13] used a 

gated recurrent unit to allocate resources dynamically in LoRaWAN. 

The AI-ERA technique presented by Farhad and Pyun [14] employs deep neural networks to enhance the allocation of 

resources in IoT applications. The researchers trained machine learning based on neural networks to improve precision of 

indoor localization in the LoRaWAN networks. Regarding reinforcement learning methodologies, Zeng et al.  [15] employed 

deep reinforcement learning to enhance network resources, while [16] devised a flexible reinforcement learning-based 

method to optimize the adaptive information rate function of LoRaWAN.  

These literature works employed SL to forecast ideal network parameters, while [17] presented an adaptive transmission 

priority scheduling (TPS) approach founded on an unsupervised learning cluster approach. Table 2 presents an overview of 

the deep learning and neural network approaches employed by scholars mentioned in this section. 

 

Table 2. Summary of NN and DL Methods 

Year Method Used Model Application 

2020 DL ANNs Transmit power optimization 

2022 DL-based Resource 

Allocation 

GRU Management of resources on a large-scale deployment of LoRa-enabled 

devices 

2023 DNN AI-ERA DNN Resource allotment problem in mobile and static IoT deployments 

2023 ML NN Indoor positioning utilizing LoRaWAN 

 

Reinforcement learning approaches are utilized in this work to optimize resource allocation, particularly in LoRaWAN 

networks for energy efficiency. Table 3 presents a summary of the methodologies employed to address our research 

question. 

 

Table 3. Overview of RL Methods 

Year Technique Used Model Application 

2020 DRL Multi-DRL Agents 
LPWA models, including LoRaWAN, serve as wireless 

frameworks for the Internet of Things (IoT). 

2021 RL 
Stochastic Discrete 

algorithm 

Formulation of a flexible LoRaWAN approach for industrial 

deployment 

2021 DQN DQN Longevity of the LoRa Category A nodes 

2024 
FRL and NS 

(network slicing) 

Neural system with 

dual Hidden Layers 

Dynamic resource distribution and prioritizing inside 

infrastructure frameworks. 

2019 

RL, SARSA, Q-

Learning, and 

Deep RL 

RL algorithms LoRa-oriented systems 

2023 Multi-access RL MARL 
Energy performance in wireless underground sensors systems 

integrated with LoRaWAN 

 

The reviewed study utilized different SL frameworks to address the challenges of the LoRaWAN networks. It involves 

LSTM neural networks, the k-means clustering method, decision trees (DTs), deep neural networks (DNN), and support 

vector regression (SVR) among others will be used to predict the timing of IoT packets, optimizes systems parameters and 

extends battery life. Methods include advanced tools like SVM, ANN, and ARIMA to promote measurement accuracy and 

to effectively handle network configurations. Table 4 gives a summary of the SL methodologies that the authors have 

adopted. 

 

Table 4. Summary of ML and its Unsupervised and Supervised Forms of Learning 

Year Algorithms Employed Models Applications 

2020 ML 
DTs, LSTM NN, k-

means clustering 
Genuine extensive LoRaWAN system 



Volume 1, 2025, Pages 263-272                                                                                                           Elaris Computing Nexus 

| Regular Article | Open Access 

269 

2023 SL 
ML multiple agent 

method 

Network efficiency and energy efficiency in LoRaWAN 

using clock skew approximation 

2023 ML 
ML k-means 

clustering 

LoRaWAN framework in intelligent urban 

environments. 

2021 ML DNN, SVR 
Long-range networks, LPWANs linked to the Internet 

of Things 

2024 DL and ML 
ANN, SVM, and 

ARIMA 
Precision in outdoor LoRaWAN node devices 

2019 SL 

SVM, DTC 

(Decision Tree 

Classifier) 

Extensive geographical coverage in LPWANs 

2019 
K-means clustering-

oriented technique 
K-means clustering Extensive LoRa systems 

 

Several studies have explored how ensemble, ML, and AI frameworks were deployed to eradicate the issue of 

performance degradation, energy efficiency, and reliability in the LoRaWAN system. Deep Reinforcement Learning, 

Ensemble Learning, and Multi-Armed Bandit (MAB) approaches have been used as methods to improve the efficiency of 

generic networks in the presence of interference and congestion. These methodologies have been significantly improved and 

are summarized in Table 5. 

 

Table 5. ML Ensemble Techniques 

Year Technique Used Models Application 

2023 Supervised RL, ML Lasso technique, EXP4 IoTs 

2019 ML-oriented Q-learning Q-learning Extensive coverage regions in LoRaWAN 

2020 Model aggregation KNN-RFR 
Accuracy of outside positioning in LPWAN 

techniques 

2020 
Cognitive radio 

networks, DRL 
DRL 

Mobility within congested LoRa systems 

(mobile end nodes) 

2023 MAB, RL LP-MAB LPWANs and IoT, explicitly LoRaWAN 

2022 ML PSO, ANN Industrial IoT applications. 

2023 ML ANNs, MLR Practical IoT applications 

2020 Dynamic TPS 
Naïve Bayes, 

unsupervised clustering 
LoRaWAN dense applications 

 

In [18], it is mentioned that reinforcement learning methodologies have been greatly applied to energy-efficient 

LoRaWANs. Examples of the new methodologies used with DL models and algorithms include MARL, FRL, generic RL, 

and DRL. The optimization of the usefulness of network parameters was the main focus of RL algorithms; however, the 

Deep Learning method was used to solve issues like the prediction of resource deployment and transmission power 

optimization.  

SL algorithms are exploited to predict the outcomes based on the discovered dataset containing the arrival times of 

packets. Data analysis with no defined labels was typically done using SL algorithms to cluster tools based on uniform 

behaviors or improve transfer parameters without earlier understanding of optimal settings. Ensemble approaches combine 

multiple machine learning strategies to increase prediction precision, reliability, and strength. The distribution of models and 

methodologies in the literature is presented in Fig. 1. 

 

 
Fig 1. Commonly Utilized Methodologies in Literature. 
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Garrido-Hidalgo et al. [19] reviewed different studies on different aspects of LoRaWAN networks with a sharp focus on 

using various datasets and models to mitigate the problem that are related to network efficiency, resource assignment, and 

optimization approaches in the implementation of LoRaWANs. The scholars used the following simulators and data sets as 

summarized in Table 6. 

The study often utilized both modeled ecosystems including NS-3 and OMNeT++ datasets and real-life data sets. We 

concur on utilization of real-world and model-based dataset obtained by Monte Carlo simulation to successfully train the 

artificial neural networks to improve energy efficiency in LoRa system. The MATLAB-simulation implementation and the 

Microsoft Azure-real life-training of data usage represents the combination of the classical programming ecosystems with 

the cloud-surgery systems that effectively simulate and process the data. 

 

Table 6. Overview of Simulations and Datasets 

Year Dataset Details and Features Dataset Dimension Simulation Description 

2023 

Produced utilizing the X-Y 

coordinates, ns-3 simulator.  ACK 

status, and Prx, SNR.  500 

emergency departments, 10 days, 

10 minutes packet dispatch 

duration. 

500 endpoints, many 

dataset points per 

endpoint over a duration 

of 10 days 

NS-3 modeler incorporating 

long-range propagation, 

interference, and shadowing 

systems. 

2020 

Compact network of up to 1000 

devices.  Nodes communicate 

utilizing SF7.  The dataset 

comprised sensor recordings. 

Up to 1000 devices within 

an area of 3 km² 

NS-3, concentrated on the 

automated transmission energy 

state transition with K-Means 

clustering 

2022 

Produced utilizing the SNR, ns-3 

simulator.  X, Y coordinates, ACK 

status and Prx.  Every ED broadcast 

6 uplinked packets each hour. 

500 EDs, regular data 

acquisition 

NS-3 utilizing a GRU model for 

the dynamic allocation of SFs 

2020 

Originating from TTN UK 

formulations.  Primary energy 

usage factors decreased from 20-15 

35,192 recordings 
Data loading methodologies.  

Data scaling through rescaling 

2020 

Authentic LoRaWAN system in 

Italy.  Information from the water 

usage monitoring service, 

encompassing SF, SNR, RSSI, and 

other parameters. 

290 water meters, 

372,119,877 packages, 

89,528 EDs 

Instantaneous data assessment 

2024 
Produced from network connection 

under authentic IoT state 

CR, BW, TP, SF 

maximum 1000 

nodes/slicing 

LoRaSim, an open-source 

framework implemented in 

Python 

2020 
Data produced from network 

connections. 
30 LoRa devices 

The custom modeling comprises 

a single gateway.  Five 

groupings and a topological size 

of 1500 x 1500 m2. 

2019 

Packets rate = 0.01-2 

packets/second, Packet significance 

= 0 to 1, Signal-to-Noise Ratio = -

23- 23 dB, Transmission energy = 

14 dBm. sized packets = 15 30-byte 

packets. 

20-200 node network 

Simulations simulated with 

SimPy on 8-core Intel Xeon 

computer, using 12-hour runs 

with 100 random seeds. 

2024 LoRaWAN 
RSSI decreases to 2029-

1870 records. 
ARIMA forecasting 

2020 LoRaWAN 

On average, 130,400 

messages were gathered 

in Antwerp (Belgium). 

Computing frameworks 

 

A significant feature in our study is instantaneous data, where machine learning models were trained to achieve enhanced 

indoor localization in the LoRaWAN system. Fig 2. depicts the percentage of database classes involved in this work. 

Campanile et al. [20] primarily employed ns-3 simulator to generate comprehensive artificial dataset. It provides a real-life 

setting for evaluating network standards and techniques under regulated yet varied states, hence enhancing the simulation of 

resource management methods as detailed in the literature. These scholars performed simulations utilizing theoretical models 

and bespoke Python-based simulators created expressly for their research. Fig 2. illustrates the type of simulation we 

employed in this study.  
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LoRaEnergySim (LES) has been widely employed to model colliding and vulnerable packets alongside regular 

LoRaWAN dataset for IIoT (Industrial IoT) deployments, although they have not specifically addressed the dataset's size. 

The incorporation of Python-based technologies such as Keras and TensorFlow for executing deep learning algorithms 

underscores the transition towards advanced, AI-based methodologies in device allocation and network control within 

LoRaWAN, as illustrated in Fig. 3. These technologies enable scholars to train and develop complex systems with ease, 

using massive datasets in an attempt to achieve greater predicted accuracy. 

 

 
Fig 2. Types of Data Classes. 

 

 
Fig 3. Types of Simulators. 

 

V. CONCLUSION 

We show how deep learning, reinforcement learning, and ensemble algorithms can be combined to optimize the performance 

of the LoRaWAN network. Through extensive testing, it was found that our design dynamically tunes transmission 

parameters, effectively balancing communication reliability with energy use. The findings demonstrated significant 

improvements in energy efficiency, throughput and the probability of packet delivery and long network lifetime in 

comparison to traditional approaches. Notably, the multi-agent-enhanced reinforcement learning helped classify devices to 

collaboratively optimize the system, which further advanced the scalability and resilience of the network. The ensemble 

learning schemes improved both prediction accuracy and system resilience to the different network traffic patterns and 

interference levels. 
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