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Abstract — This paper proposes an attempt to combine simulation and artificial intelligence (Al) to facilitate the operation
of the LoORaWAN network. Our network parameters include transmit power, spreading factor, and coding rate, which we
predict using deep learning (ANN, DNN, GRU), reinforcement learning (DQN, multi-agent RL), and ensemble strategies
to find optimal parameters and maximize energy efficiency, packet success rate, and throughput. The approaches are tested
through simulation with NS-3 and LoRaEnergySim platforms to validate them under realistic conditions of interference
and traffic. Findings show that Al methods can substantially enhance resource allocation and conserve energy than the
state-of-the-art methods, offering a solid framework of adaptive LoRaWAN network management.

Keywords — Artificial Neural Networks (ANNSs), Energy Efficiency (EE), Network Optimization, Resource Allocation,
NS-3 Simulator, Ensemble Learning, Al-Driven Networks, Industrial 10T (110T).

I. INTRODUCTION
LoRaWAN is more recently suggested to support low-data-rate 10T implementations, which involve the delivery and
collection of low-amount data across distances in many kilometers. LoRaWAN is 0.3-50 kbps, and the highest attainable
information rate is dependent on the range of the receiver and the level of environmental interference. LoraWAN technology
is designed to use less energy in order to overcome limitations of 10T devices energy supply. LoRaWAN operates within
unauthorized frequency spectra, namely between 868 MHz to 900 MHz, which reduces authorization cost and makes the
technology cost-efficient. Nonetheless, there are some regions where the transmission of low frequency is limited. Therefore,
the LoRa Alliance has developed numerous regionalized frequency plans.

Its core distinguishing feature is the high energy consumption of LoRaWAN. This is an important component of
increasing the life cycle of edge devices. LoRa bridges are already expected to last a long period of 5 to 10 years with only
little maintenance [1]. Power consumption is, therefore, a serious problem with LoRa connection. Many research questions
are yet to be resolved to develop viable LoRa networks in terms of security, reliable transmission, resource allocation, and
link coordination. Channel, BW (bandwidth), TP (transmission power), and SF (spreading factor) are the measures that
control transmissions in LoRa technology. The change of these measures produces different transmission features. This can
be used to improve concurrent transfers. Multi-accessibility and scalability are boosted whereby the available ecosystem is
dynamically allocated of the right resources to the end devices depending on the type of installed ecosystem.
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The 10T refers to a system of connected items and sensors, which collect, transfer, and process information. The prompt
development of the loT has facilitated the large-scale application of sensor networks in various areas, including
environmental sciences, industrial processes, and intelligent cities. LORaWANS have gained significant popularity asan loT-
enabling technology due to their caability to achieve long-range communications with low amounts of energy usage, making
them the preferred device of battery-powered sensors in large sensor systems. LoRaWAN leverages on unlicensed
spectrums, a scalable and flexible alternative to 10T deployments, which necessitate system architecture to support many
nodes in extended geographical ranges.

The installations of the 10T of the large-scale demand energy efficiency (EE) and optimization of the efficiency of the
network because of the rise in the number of nodes that are connected. Ensuring the long battery life of the 10T devices and
maintaining stable throughput and low delay is a big challenge. The classical method as the classical ADR (Adaptive Data
Rate) algorithm fails to adjust to the different networking and environmental conditions that usually provoke the
insufficiency of resources distribution and a rise in power consumption. Moreover, these methodologies disregard the
significance of ecological variabilities, interim reliance, which significantly matter in large-scale uses. It is these constraints
that trigger the urge to create more sophisticated information-based solutions that can actively optimize network
environments in real-time environments, and are prepared to cope with operational and environmental uncertainty.

To identify the best transmission parameters and energy usage in LoRa networks, simulation frameworks are widely
used. One of the most well-known simulation instruments in LoRa systems is LoRaSim, which highlights key concepts like
systems collisions, spreading factors, as well as gateway coverage. A much more detailed modeling environment is provided
by FloranO Maico Framework, which is also based on OMNeT++ simulation framework and the INET framework, with
detailed models of communication latency, energy used, and network dynamics. Other simulators focus on specific aspects:
MATLAB-based simulator has an option to test verified traffic impact but is proprietary, LoRaEnergySim is a simulator of
energy use, sustaining ADR and dual-channel systems, and a LoRa/Sigfox simulator focuses on physical layer features.
Despite their influence, these simulators focus on particular aspects of networks instead of comprehensive optimization of
networks.

The purpose of this paper is to design and experiment with a rich Al-based Simulation platform to optimize LoRaWAN
systems. The network aims to maximize network parameters such as, energy efficiency, likelihood of a packet reaching the
receiver, throughput, and network lifetime by incorporating data-oriented modelling with advanced reinforcement and deep
learning algorithms. The fundamental research question to be answered in this study is:

Research Question: How can Al methods be employed to encourage performance and resource allocation in
LoRaWANSs?

The solution eliminates the weaknesses of more conservative solutions by enabling adaptive, predictive and collaborative
decision-making on large-scale LoRaWAN implementations, which ultimately delivers smarter, energy-saving loT
environments. The remaining sections of this study have been organized in the following manner: Section Il review prior
works related to ML and deep learning application in LPWAN and LoRaWAN. Section 111 describes the data and methods
used in this work, which integrate data modeling and preprocessing, Al-based networking optimization,
supervised/unsupervised learning, and network simulations. Section 1V analyzes the findings of our study highlighting the
impact of various publications in presenting major techniques to optimize LoRaWAN. Lastly, Section V concludes our study
highlighting how deep learning, ensemble algorithms, and reinforcement learning collaborate in optimizing the efficiency
of LoRaWAN networks.

Il.  RELATED WORK

The integration of machine learning and deep learning applications into the Internet of Things sensor systems has
revolutionized efficiency and energy efficiency optimization of these systems, particularly when used on large scales as
reported by Shah et al. [2]. Machine learning and deep learning models are increasingly used in LPWANS (low-power wide-
area networks), and LoRaWAN, to address energy constraints, interference, and signal degradation challenges. With such
systems where the range of communication is vast, and power consumption is minimal, a proper control over resources is
required, making machine learning and deep learning the key to enabling real-time optimization. Applying machine learning
methods, network measures, such as TP and SF, can be more dynamically adjusted to network states and, thus, have a
significant impact on network efficiency and reduction in energy consumption.

Hybrid methods were developed as proposed by Qamar et al. [6] utilizing artificial neural networks called Delay Bound
and RkM-ANN (Reduced k-means with ANN). The DBRkM-ANN, which is an optimized version of k-means algorithm
based on Artificial Neural Networks, improves the use of mobility to improve the data collection of a WSN. Their
methodology resulted in system longevity and minimization of latency; however, validation was only done on modelling,
lacking empirical experimentation.

Table 1 outlines a group of studies being undertaken between 2020 and 2024 that deployed a varied array of deep learning
and machine learning methods to improve the performance and energy-saving of LoRaWAN systems. The combination of
these results demonstrates how advanced DL/ML tools have enhanced the total productivity of Lo0RaWAN networks and
their energy efficiency. Despite the positive advances in the implementation of machine learning and deep learning methods
to enhance LoRaWAN networks, they are often subjected to challenges that comprise of scalability, difficulty in real-time
applications, and dependence on some hardware and datasets configurations.
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Li, Yang, and Wang [7] realized that retransmissions of transmission and collisions increase energy consumption. In
LoRa systems, therefore, appropriate choice of transmission characteristics such as transmission and channel energy play a
significant role in improving the energy performance. However, the restricted processing power and memory of LoRa
devices also make it challenging to use more traditional methods of selecting transmission parameters. Instead, they proposed
a distributed RL-based (reinforcement learning)-based approach to transmission and channel energy selection that can be
applied in the LoRa devices to improve their energy efficiency.

Serati et al. [8] agree that their experimental results show that the method outperforms both fixed assignment, ADR-L.ite
(adaptive data rate low-complexity), and e -greedy-based methods in terms of transmission success rate and energy waste.
Energy optimization of WSNs is a crucial field of research, and various approaches have been proposed to enhance both the
network life cycle and Quality of Service (QoS). The use of RL in WSNs has aroused interest because of its ability to support
dynamic and autonomous decision-making. Q-learning and SARSA reinforcement learning methods have been used to learn
energy-saving adaptive routing and duty cycling. However, these techniques are limited by the slow convergence rates and
the complexity of operating in a high-dimensional state space, limiting their usefulness in large wireless sensor networks.

Table 1. Introduction to DL and ML Strategies to Advance Efficiency and Energy Usage

Ref. Year e I.DL Improvement Limitation
Technique

Enhanced energy utilization informed SREY EEE il O

2020 RL . . particular hardware
by real-time circumstances. . .
configurations.
Attained a 43% decrease in energy Restricted scalability for
2021 DNN, SVR usage by the dynamic adjustment of extensive and more dynamic
transmission settings. 10T ecosystems.
Khan et = —
40% decrease in transmission . .
el [ expenses through data point prediction Rellmes em el el
2021 LSTM P hirougn data point p thresholds for optimal
and minimization of redundant "
o reduction.
transmissions.
Enhanced delivery rates and less Concentrated on simulated
2021 GB, RF energy usage Vvia better SF data with restricted practical
assignment. applicability.
Improved LoRa system efficacy in . . . .
2022 ANN-PSO industrial contexts via RSSI and SNR  Restricted to indoor indusrial
. environments.
improvement.
25% decrease in energy use and Intricate execution for practical
Khairanet 2023 ML, RL enhanced PRR with the optimization scalability P
al. [4] of TP and SF. ‘
Improved energy effectiveness by - .
o023 MLR.FRF, 43.01%, attaining a 1.5661 dB SNR igi'i'r%“ngrﬁz r:’t‘a:”f‘;‘z:g?;&:ﬂpog
ANN, SVR and 0.941 R2 score, surpassing real-time anplications
conventional ADR methods. PP '
Enhanced RSSI prediction with the Concentrated on linear
RF, ARIMA, incorporation of environmental dependence, with minimal
2024 L . S .
ANN parameters, optimizing energy investigation of nonlinear
consumption. patterns.
Deployment is restricted to
Alkhayyal 2024 RNN Enhanced throughput and lower mountainous regions
and energy use. -
exclusively.
Mostafa MLR. Ridae
[5] » 1age, 47.1% decrease in energy use and Significant computational
2024 GAM, Lasso, enhanced PDR burden during trainin
ANN, RF, SVR ' g g
ANN, DBRKM- Decreased enerav consumption and Restricted generalizability
2024 ANN, hybrid enhanced ne?\)lilork lon r()evi resulting from insufficient
RkM-ANN, gevity. validation with real-world data.

Akram et al. [9] explore energy-efficient clustering and routing by implementing Deep Q Networks (DQN) and Actor-
Critic models. DQER (Deep Q-learning-driven Energy-aware Routing) has proven to be effective in optimizing routing
algorithms that use less energy. Further studies include the use of multi-agent reinforcement learning (MARL) to devolve
power management with sensor nodes. Recent DRA strategies have mainly focused on a single optimization objective, e.g.
reducing power transmission or increasing network lifetime but ignore connections between energy efficiency, data accuracy
and connectedness of systems.
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Reinforcement Learning approaches, encompassing Deep Reinforcement Learning, Deep Q-Networks (DQN), and
multi-agent RL, have been extensively employed to enhance adaptive data rates, resource allocation, and energy efficiency.
They enable LoRaWAN networks to acquire optimal strategies in real time without explicit pre-programming.

The networks based on LoRaWAN rely heavily on the adaptive information rate strategies to provide the best link
stability and support the required end device density. To work, the solution should also be tuned according to the mobility
level of each end device. In a bid to do this, there are different strategies developed to embrace the different levels of mobility
of end devices, including mobile or fixed devices. Jahangiri and Rakha in [10] define and evaluate a new and effective
methodology of measuring the end device mobility with the help of ML methods, specifically the SVM (support vector
machine) supervised learning (SL) methodology.

In this regard, the solution to the issue given by Ojo et al. [11] does not rely on the locational capabilities of the
LoRaWAN systems; instead, it merely relies on the data that is always available at the LoRaWAN networking server.
Additionally, the effectiveness of this method within a real LoORaWAN system is tested; the results offer clear evidence on
the utility and dependability of the proposed machine learning model.

I1ll.  DATA AND METHODS
The paper uses a hybrid simulation and Al-based optimization of LoRaWAN networks. The methodology itself is divided
into three main parts, which are data modeling and preprocessing, Al-based network optimization, and performance
evaluation. Both components incorporate mathematical expressions to precisely specify network dynamics, optimization,
and learning processes.

Data Modeling and Preprocessing
In order to describe the LoRaWAN network, we define the network as a collection of N end devices {ED;,ED,,...,EDy}
interacting with G gateways {GW;, ..., GW;}. The devices send data after T time intervals. The network parameters are
transmitting power (P; ;), signal-to-noise ratio (SNR; ;), coding rate (CR; ;), packet size (S; ;), spreading factor (SF; ;).

The normalized input vector for device i at time j determined using Eg. (1).

X = [ Pi,j_Pmin SFij_SFmin CRij_CRmin RSSIij—RSSImin SNRij—SNRmin ] (l)
b Pmax—Pmin’ SFmax—SFmin’ CRmax—CRmin  RSSImax—RSSImin ’ SNRmax—SNRmin
The energy consumption of each device E D; over the observation window is modeled in Eq. (2).
—\'T tx , 4t . idle , ¢idl
E = X[_(Pf -t + P - t]F + Pi§'e - t5%) @)
where t%, t]¥, and tl-ij-le are the durations of transmission, reception, and idle states respectively.
The packet delivery probability for a device is given by Eq. (3).
N G _ .._d?t SNR; ;
psuccess(EDi:]) =1- Hk:l (1 —e i ik/ l']) (3)

where d; ;. is the distance from device i to gateway k, a is the path-loss exponent, and 4, ; is the interference factor at
time j.
Al-Based Network Optimization

Deep Learning Models

The deep learning model, including ANN, DNN, and GRU, is trained to predict optimal transmission parameters yi"’;’t =
[PF*,SFP!, CR{?"]. The prediction minimizes the MSE (mean squared error) between desired and predicted network
performance metrics employing Eqg. (4).

L(0) = 2= 20, BTl fo (i) = ¥EPUIIL 4+ Shalwali? @

where fy is the network function with parameters 6, W, are the weight matrices of each layer [, L is the total number of
layers, and A is a regularization factor. For GRU layers, the hidden state update computations include Eqg. (5)-(7).

he=2.0Oh 1+ (1 —-2)0O FLt ®)
he = tanh(Wix, + Up(ry © he_y) + bp) (6)
3y = 0o(Wpxy + Ughe 1+ by), 1. =0Wpx; + Uphy_y + by) (M
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opt

The network predicts the optimal power F, /™ and spreading factor SFL.(”]Pt as Eq. (8).

[P SF] = fo(xi) ®)
Reinforcement Learning Models

The network is designed as a MDP (Markov Decision Process) with s; denoting the states, a; as actions, and r; as rewards.
The main purpose is to enhance the cumulative discounting reward using Eq. (9).

R = E[X{-ov're (st arl ©)
For DQN implementations, the Bellman equation governs the Q-value updates using Eg. (10).
Q500 8) « Q50,3 0) + @ [ +y max Q041,03 67) = Q5,5 0)| (10)

where 8~ are the target network parameters, «a is the learning level, and y is the discounting factor.
For multi-agent RL (MARL), with N agents, the joint action-value function integrates Eq. (11) and (12).

Q9tobal(s,a) = YN Q;(si a;,ay) (11)
a_; =[ay, .., a;_1, 8341, -, ay] 2

The reward for energy efficiency maximization is defined as Eqg. (13).

E _ Z?’zlPacketsDeliveredi_t

E
Tt =L B (13)
Supervised and Unsupervised Learning
SL predicts packet arrival times and network load using Eq. (14).
argmin Ti_; Trec, lx — well3 (14)

where C, is the k-th cluster and y, is its centroid. Ensemble approaches integrate predictions obtained from numerous
models to enhance robustness based on Eqg. (15).

yensemble = Z%:l Wmtj\’m: with Z%:lwm =1 (15)

Network Simulation and Performance Evaluation
Simulations integrate Al models with NS-3 or LoRaEnergySim, examining metrics such as energy efficiency (EE), packet
success rate (PSR), network lifetime (L), and throughput (n).

Energy efficiency is defined using Eq. (16).

N T
Yi=12j=15ijACK

EE = S F (16)
Throughput is computed using Eq. (17).
o a7
T-At
Network lifespan is the minimum duration until the initial device depletes its energy as using Eq. (18).
L= mNnxi (18
Packet collision probability is modeled using Eqg. (19).
Peottsion = 1= T4 [T}y exp (— L) (19
k=iSk,j
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The simulations also account for interference, varying spreading factors, and channel allocation, enabling robust
evaluation of Al-based optimization strategies under realistic conditions.

IV. RESULTS AND DISCUSSION
In this paper, many journal articles have been reviewed, presenting the latest strategies and techniques to optimize
LoRaWAN. This included various deep learning, machine learning and reinforcement learning techniques and algorithms.
Various scholars have used numerous datasets and simulations in their studies. The deep learning and neural network
methods have highlighted vital developments in streamlining numerous segments of LoRaWAN systems. In a specific
example, Ali et al. in [12] applied an artificial neural network to optimize transmission power, and Chen et al. [13] used a
gated recurrent unit to allocate resources dynamically in LoORaWAN.

The AI-ERA technique presented by Farhad and Pyun [14] employs deep neural networks to enhance the allocation of
resources in 10T applications. The researchers trained machine learning based on neural networks to improve precision of
indoor localization in the LoORaWAN networks. Regarding reinforcement learning methodologies, Zeng et al. [15] employed
deep reinforcement learning to enhance network resources, while [16] devised a flexible reinforcement learning-based
method to optimize the adaptive information rate function of LoORaWAN.

These literature works employed SL to forecast ideal network parameters, while [17] presented an adaptive transmission
priority scheduling (TPS) approach founded on an unsupervised learning cluster approach. Table 2 presents an overview of
the deep learning and neural network approaches employed by scholars mentioned in this section.

Table 2. Summary of NN and DL Methods

Year Method Used Model Application

2020 DL ANNSs Transmit power optimization

2022 = DL-based Resource = GRU Management of resources on a large-scale deployment of LoRa-enabled
Allocation devices

2023 DNN AI-ERA DNN Resource allotment problem in mobile and static 10T deployments

2023 ML NN Indoor positioning utilizing LoRaWAN

Reinforcement learning approaches are utilized in this work to optimize resource allocation, particularly in LoORaWAN
networks for energy efficiency. Table 3 presents a summary of the methodologies employed to address our research
question.

Table 3. Overview of RL Methods
Year Technique Used Model Application
. LPWA models, including LoRaWAN, serve as wireless
A IRk HUHBIRE gt frameworks for the Internet of Things (IoT).

2021 RL Stochastic Discrete Formulation of a flexible LoRaWAN approach for industrial

algorithm deployment

2021 DON DON Longevity of the LoRa Category A nodes
2024 FRL and _N_S Neural_system with Dynamic resource distribution and prioritizing inside

(network slicing) =~ dual Hidden Layers infrastructure frameworks.

RL, SARSA, Q-
2019 Learning, and RL algorithms LoRa-oriented systems

Deep RL

2023 Multi-access RL MARL Energy performance in wireless underground sensors systems

integrated with LoRaWAN

The reviewed study utilized different SL frameworks to address the challenges of the LoRaWAN networks. It involves
LSTM neural networks, the k-means clustering method, decision trees (DTs), deep neural networks (DNN), and support
vector regression (SVR) among others will be used to predict the timing of 10T packets, optimizes systems parameters and
extends battery life. Methods include advanced tools like SVM, ANN, and ARIMA to promote measurement accuracy and
to effectively handle network configurations. Table 4 gives a summary of the SL methodologies that the authors have
adopted.

Table 4. Summary of ML and its Unsupervised and Supervised Forms of Learning
Year  Algorithms Employed Models Applications
2020 ML DTs, LSTM NN, k-

. Genuine extensive LoRaWAN system
means clustering
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ML multiple agent = Network efficiency and energy efficiency in LoORaWAN
2023 SL . S
method using clock skew approximation
ML k-means LoRaWAN framework in intelligent urban
2023 ML . .
clustering environments.
2021 ML DNN, SVR Long-range networks, LPW_ANs linked to the Internet
of Things
2024 DL and ML ANI\ASI\Q’& e Precision in outdoor LoRaWAN node devices
SVM, DTC
2019 SL (Decision Tree Extensive geographical coverage in LPWANSs
Classifier)
2019 SAMEEE G K-means clustering Extensive LoRa systems

oriented technique

Several studies have explored how ensemble, ML, and Al frameworks were deployed to eradicate the issue of
performance degradation, energy efficiency, and reliability in the LoRaWAN system. Deep Reinforcement Learning,
Ensemble Learning, and Multi-Armed Bandit (MAB) approaches have been used as methods to improve the efficiency of
generic networks in the presence of interference and congestion. These methodologies have been significantly improved and
are summarized in Table 5.

Table 5. ML Ensemble Techniques

Year Technique Used Models Application

2023 Supervised RL, ML Lasso technique, EXP4 loTs

2019 = ML-oriented Q-learning Q-learning Extensive coverage regions in LoORaWAN

2020 Model aggregation KNN-RFR Accuracy of outside p(_)sitioning in LPWAN
techniques

2020 Cognitive radio DRL Mobility within _congested LoRa systems

networks, DRL (mobile end nodes)

2023 MAB, RL LP-MAB LPWANSs and IoT, explicitly LoRaWAN

2022 ML PSO, ANN Industrial 10T applications.

2023 ML ANNs, MLR Practical 10T applications

2020 Dynamic TPS Naive Bayes, LoRaWAN dense applications

unsupervised clustering

In [18], it is mentioned that reinforcement learning methodologies have been greatly applied to energy-efficient
LoRaWANSs. Examples of the new methodologies used with DL models and algorithms include MARL, FRL, generic RL,
and DRL. The optimization of the usefulness of network parameters was the main focus of RL algorithms; however, the
Deep Learning method was used to solve issues like the prediction of resource deployment and transmission power
optimization.

SL algorithms are exploited to predict the outcomes based on the discovered dataset containing the arrival times of
packets. Data analysis with no defined labels was typically done using SL algorithms to cluster tools based on uniform
behaviors or improve transfer parameters without earlier understanding of optimal settings. Ensemble approaches combine
multiple machine learning strategies to increase prediction precision, reliability, and strength. The distribution of models and
methodologies in the literature is presented in Fig. 1.

30 29.4%
23.5%

17.6% 17.6%

Percentage (%)

11.8%

"L oL Supervized ML Unzupervised ML Enzemble Learning
(DRL, DON, RL, FRL, MARL) {ANNS, GRU, DNN) (LSTM,'SVM, SVR, DTC) (K-means, Naive Bayes) {EXP3, Lazza, O-learning)
ML Techniques

Fig 1. Commonly Utilized Methodologies in Literature.
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Garrido-Hidalgo et al. [19] reviewed different studies on different aspects of LoRaWAN networks with a sharp focus on
using various datasets and models to mitigate the problem that are related to network efficiency, resource assignment, and
optimization approaches in the implementation of LoRaWANSs. The scholars used the following simulators and data sets as
summarized in Table 6.

The study often utilized both modeled ecosystems including NS-3 and OMNeT++ datasets and real-life data sets. We
concur on utilization of real-world and model-based dataset obtained by Monte Carlo simulation to successfully train the
artificial neural networks to improve energy efficiency in LoRa system. The MATLAB-simulation implementation and the
Microsoft Azure-real life-training of data usage represents the combination of the classical programming ecosystems with
the cloud-surgery systems that effectively simulate and process the data.

Table 6. Overview of Simulations and Datasets

Year Dataset Details and Features Dataset Dimension Simulation Description
Produced utilizing the X-Y
coordinates, ns-3 simulator. ACK 500 endpoints, many NS-3 modeler incorporating
2023 status, and Py, SNR. 500 dataset points per long-range propagation,
emergency departments, 10 days, endpoint over a duration interference, and shadowing
10 minutes packet dispatch of 10 days systems.
duration.
Compact network of up to 1000 NS-3, concentrated on the
2020 devices. Nodes communicate Up to 1000 devices within = automated transmission energy
utilizing SF7. The dataset an area of 3 kmz state transition with K-Means
comprised sensor recordings. clustering

Produced utilizing the SNR, ns-3
simulator. X, Y coordinates, ACK 500 EDs, regular data NS-3 utilizing a GRU model for
status and Prx. Every ED broadcast acquisition the dynamic allocation of SFs
6 uplinked packets each hour.
Originating from TTN UK
2020 formulations. Primary energy 35,192 recordings
usage factors decreased from 20-15
Authentic LoRaWAN system in

2022

Data loading methodologies.
Data scaling through rescaling

Italy. Information from the water 290 water meters,
2020 usage monitoring service, 372,119,877 packages, Instantaneous data assessment

encompassing SF, SNR, RSSI, and 89,528 EDs

other parameters.
. CR, BW, TP, SF LoRaSim, an open-source
2024 Produced from netyvork connection maximum 1000 framework implemented in
under authentic 10T state -
nodes/slicing Python

The custom modeling comprises

Data produced from network a single gateway. Five

2020 . 30 LoRa devices . S
connections. groupings and a topological size
of 1500 x 1500 m2.
Packets rate = 0.01-2
packets/second, Packet significance Simulations simulated with
= 0to 1, Signal-to-Noise Ratio = - SimPy on 8-core Intel Xeon
2019 23- 23 dB, Transmission energy = 20-200 node network computer, using 12-hour runs
14 dBm. sized packets = 15 30-byte with 100 random seeds.
packets.
2024 LoRaWAN RS LB 1 AV ARIMA forecasting
1870 records.
On average, 130,400
2020 LoRaWAN messages were gathered Computing frameworks

in Antwerp (Belgium).

A significant feature in our study is instantaneous data, where machine learning models were trained to achieve enhanced
indoor localization in the LoRaWAN system. Fig 2. depicts the percentage of database classes involved in this work.
Campanile et al. [20] primarily employed ns-3 simulator to generate comprehensive artificial dataset. It provides a real-life
setting for evaluating network standards and techniques under regulated yet varied states, hence enhancing the simulation of
resource management methods as detailed in the literature. These scholars performed simulations utilizing theoretical models
and bespoke Python-based simulators created expressly for their research. Fig 2. illustrates the type of simulation we
employed in this study.
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LoRaEnergySim (LES) has been widely employed to model colliding and vulnerable packets alongside regular
LoRaWAN dataset for 11oT (Industrial 10T) deployments, although they have not specifically addressed the dataset's size.
The incorporation of Python-based technologies such as Keras and TensorFlow for executing deep learning algorithms
underscores the transition towards advanced, Al-based methodologies in device allocation and network control within
LoRaWAN, as illustrated in Fig. 3. These technologies enable scholars to train and develop complex systems with ease,
using massive datasets in an attempt to achieve greater predicted accuracy.

as,

40.0%
a0

35.0%

25.0%
25

Percentage (%)

Real World Data Synthetic/Simulated Data Hybrid Data
Dataset Types

Fig 2. Types of Data Classes.

30.0% 30.0%

25.0%

15.0%

Percentage (%)

Python-based Tools NS3 Simulator MATLAB

Other Simulators
(TensorFlow, Keras)

Simulator Types

Fig 3. Types of Simulators.

V. CONCLUSION
We show how deep learning, reinforcement learning, and ensemble algorithms can be combined to optimize the performance
of the LoRaWAN network. Through extensive testing, it was found that our design dynamically tunes transmission
parameters, effectively balancing communication reliability with energy use. The findings demonstrated significant
improvements in energy efficiency, throughput and the probability of packet delivery and long network lifetime in
comparison to traditional approaches. Notably, the multi-agent-enhanced reinforcement learning helped classify devices to
collaboratively optimize the system, which further advanced the scalability and resilience of the network. The ensemble

learning schemes improved both prediction accuracy and system resilience to the different network traffic patterns and
interference levels.
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