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Abstract – Personalized text-to-speech (TTS) synthesis has the goal of producing natural and expressive speech that 

emulates the voice of a target speaker with a minimum of data. The models of traditional neural TTS, including Tacotron 

2 and Fast Speech 2, need to be trained in large amounts of speaker-specific data and can thus not easily be personalized 

quickly. We suggest CL-FS-TTS (Contrastive Learning based Few-Shot Text-to-Speech) to solve this problem, a new 

framework that uses contrastive speaker representation learning to adapt the speaker using only 1030 seconds of reference 

audio. The CL-FS-TTS architecture has two encoders: a content encoder that identifies linguistic features of text and a 

speaker encoder trained with the help of supervised contrastive learning to maximize speaker dissimilarity. In adaptation, 

the model matches speaker embeddings with generated mel-spectrograms with a contrastive consistency loss, enhancing 

voice and prosodic consistency. We compare CL-FS-TTS with Tacotron 2, Fast Speech 2, AdaSpeech, YourTTS, and 

Meta-TTS in terms of Mean Opinion Score (MOS), Speaker Similarity Score (SSS), Mel Cepstral Distortion (MCD) and 

Word Error Rate (WER). The experimental outcomes indicate that CL-FS-TTS has a higher naturalness and similarity of 

the speaker besides 40% less adaptation time in comparison with baselines. The suggested model lays the foundation of an 

efficient and strong model of high-quality personalized TTS synthesis in the situation of data scarcity. 

 

Keywords – Few-Shot Speaker Adaptation, Contrastive Learning, Personalized Text-To-Speech (TTS), Speaker 

Embedding, Neural Speech Synthesis. 

I. INTRODUCTION 

Background and Motivation 

The communication style of human beings has also changed tremendously due to emergence of intelligent systems that are 

able to comprehend and make speech. One of the most revolutionary of these technologies is the text to speech (TTS) 

synthesis [1] that is used to transform written text into sound. Contemporary neural TTS systems have achieved 

unbelievable degrees of naturalness, which produces voices that are sometimes hardly distinguishable with human speech. 

Such advancements have been facilitated by deep learning systems including Tacotron 2, FastSpeech, and VITS, which 

make use of attention and end-to-end training systems to generate high quality and talk-like speech [2]. Nevertheless, 

personalization, or creating speech that reflects the individual vocal qualities and speaking manner and tone of a particular 

human being is one of the issues that need to be addressed urgently but has not been done so yet. Personalized TTS is 

gaining enormous opportunities in many aspects including voice restoration in individuals with speech disorder, synthesize 

voices of computerized avatars, ease of access in accessibility equipment, and interfaces with users in virtual assistive 

devices. However, even the majority of state-of-the-art models require significant amounts of speaker-specific information, 

which can be costly to gather or practically impossible to obtain. 

This inspires the investigation of few-shot speaker adaptation - a method in which a system is trained to produce a novel 

voice with only seconds or minutes of reference audio. The most important issue with this is that the little data can cause 

unstable training, loss of the identity of the speaker and a poor generalization between unknown speakers or language 
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situations. To overcome such problems, current studies have emphasized on self-supervised and contrastive learning 

models to construct richer speaker representations that are well generalized on limited data [3]. 

 

Problem Statement 

Although the few-shot adaptation has improved, there are three limitations that are still critical in the current methods. To 

begin with, when there is little data, speaker embeddings generated by conventional encoders cannot necessarily be able to 

represent the fine details of timbre, accent, and emotion. This produces artificial voices that are generic, but not 

customisable. Second, the majority of adaptation methods involve direct fine-tuning of large pre-trained models, including 

Tacotron 2 or FastSpeech 2, which can be computationally expensive as well as overfitting on small training sets. Third, 

there are still no strong mechanisms that can be used to bring consistency between the speech produced and the latent 

representation of the target speaker during adaptation. Lacking these restrictions, the capability of the model to preserve 

speaker identity is impaired when the model tries to generalize in unknown phonetic or prosodic situations. All these issues 

point to the necessity of a more powerful, data-conscious framework that will be able to effectively learn discriminative 

and stable speaker representations using limited data and produce the synthesized speech that will be natural and                        

clear [4, 5]. 

 

Proposed Solution 

To overcome them, this paper proposes CL-FS-TTS (Contrastive Learning-based Few-Shot Text-to-Speech), a new 

framework that aims at a high-quality personalized speech synthesis with limited speaker data. The key point of CL-FS-

TTS is that the concept of contrastive representation learning is introduced into the adaptation of the TTS process. The 

contrastive learning makes the model to learn both discriminative and invariant speaker embeddings, i.e. being able to 

differentiate between speakers and being consistent to variations in linguistic content and recording conditions. 

Our system is a dual-encoder system comprising of: 

• A content encoder that is able to extract linguistic and prosodic information out of text and mel-spectrograms, and 

• A speaker encoder that is pre-trained on a supervised contrastive task that maximizes the similarity of the same 

speaker and minimizes that of speakers. 

In adaptation, a contrastive consistency loss is used to match the speaker embedding of the reference audio to the 

embedding of the speaker produced by the decoder to ensure that again the synthesized speech has retained the speaker 

identity despite limited training samples. The lightweight fine-tuning strategy is also utilized in the model to reduce the 

number of computations and therefore the model can be deployed on resource scarcity devices and also used in real-time 

personalization. 

 

Novelty and Contributions 

The major originality of the research is the combination of contrastive learning and few-shot speaker adaptation in an end-

to-end TTS model. Although other models like AdaSpeech, YourTTS and Meta-TTS have achieved progress in terms of 

adaptation efficiency, lack of mechanism to explicitly impose consistency between generated and reference voice is 

common between these models. 

The given paper can make a contribution to the current knowledge that can be summarized as follows: 

• Contrastive Learning of Speaker Representation: a supervised contrastive training method is adopted to pre-train 

speaker encoder so as to achieve a better discrimination of speaker identities and resistance to data deficiencies. 

• Contrastive Consistency Loss to Adaptation: A new loss term is used to match latent speaker embedding during 

few-shot adaptation and maintain speaker-specific features of the synthesized speech. 

• Lightweight Fine-Tuning Strategy: The adaptation process only fine-tunes a few layers of the TTS decoder and 

saves training time and computation costs by more than 40x over a full model fine-tuning. 

• Complete Evaluation Framework: The framework is tested on both objective and subjective measures such as Mel 

Cepstral Distortion (MCD) and Word Error Rate (WER) and human assessment of the system including Mean 

Opinion Score (MOS) and Speaker Similarity Score (SSS). 

• Comparison of Performance with State-of-the-Art Models: CL-FS-TTS is strictly compared to Tacotron 2, 

FastSpeech 2, AdaSpeech, YourTTS and Meta-TTS, where it is shown to be outperforming in all three areas of 

naturalness, speaker similarity, and adaptation efficiency. 

 

Significance and Potential Applications 

The efficient implementation of few-shot personalized TTS model, such as CL-FS-TTS, has a major real-life implication. 

In the case of medical patients losing voices, given a small collection of pre-recorded samples, it may be sufficient to 

reconstruct the natural voice of communication of the affected individuals. Likewise, game developers and content creators 

might immediately create the voices of characters with few recordings, and retain expressiveness and personality. 

Personalized voices can help make reading more interactive and inclusive in the field of education and accessibility in the 

case of aids, e-learning platforms and virtual tutors. In addition, personalization can be applied in the context of human-

computer interaction to make digital assistants feel more familiar and emotionally resonant to users, which will increase 

user trust and satisfaction. The focus on contrastive learning is also correlated with the current tendencies of self-supervised 
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and representation learning, indicating that the proposed approach may be the basis of other multimodal personalization 

problems like emotion synthesis with speaker conditioning or speech-controlled animation. 

 

Organization of the Paper 

The remainder of this paper is structured as follows: 

• Section 2: Related Work – reviews existing literature on neural TTS systems, few-shot speaker adaptation methods, 

and contrastive learning approaches for speech representation. 

• Section 3: Proposed Methodology - contains the description of the architecture of CL-FS-TTS, the design of content 

and speaker encoders, the contrastive consistency loss, and the adaptation process. 

• Section 4: Experimental Setup – describes the datasets, evaluation metrics, and implementation details used to assess 

model performance. 

• Section 5: Results and Discussion – presents the quantitative and qualitative results, comparing CL-FS-TTS against 

five state-of-the-art models, followed by an in-depth analysis. 

• Section 6: Conclusion and Future Work – summarizes the contributions and highlights possible directions for 

extending this research, such as cross-lingual personalization and emotional voice synthesis. 

 

II. RELATED WORKS 

History The history of the development of personalized text-to-speech (TTS) systems goes back decades of research 

between the conventional signal processing to the recent deep learning-based generative models. This part will examine 

the most pertinent literature in the neural TTS systems, speaker adaptation, few-shot learning, and contrastive learning 

approaches which have guided the design of the proposed CL-FS-TTS. 

 

Neural Text-to-Speech Systems 

The older TTS models, including concatenative and parametric synthesis, had to be based on manual linguistic and acoustic 

cues and their speech turned out to be synthetic and unnatural. With the introduction of neural sequence-to-sequence 

models, the situation changed. An end-to-end architecture was proposed in Tacotron and Tacotron 2 and the input text was 

directly mapped to mel-spectrograms which were then converted to waveforms by neural vocoders such as WaveNet and 

WaveGlow. These models were both data intensive and speaker specific and attained the naturalness of humans [6]. 

FastSpeech and FastSpeech 2 To enhance efficiency FastSpeech and FastSpeech 2 proposed non-autoregressive 

architectures that were many times faster in inference time and quality. To substitute the attention mechanism, they 

presented duration predictors with better synthesis in a smoother and faster way. In spite of these progress, these models 

had difficulties in adjusting to new speakers, especially in the situation when there were scarce data. 

Most recently, VITS (Variational Inference Text-to-Speech) is a variant of a variational autoencoder (VAE) using a 

generative adversarial network (GAN) to simultaneously predict speech duration, pitch and waveform generation. 

Although VITS was able to reach state of the art audio quality, it was still constrained in the capacity to learn with small 

few-shot samples without overfitting or speaker loss [7, 8]. 

 

Speaker Adaptation in Neural TTS 

Speaker adaptation aims to transfer a pre-trained multi-speaker TTS model to a new target speaker using limited adaptation 

data. Several strategies have been proposed to achieve this. Speaker embedding-based approaches are among the most 

common. These methods, such as Global Style Tokens (GST-Tacotron) and Deep Voice 3, introduce learnable embeddings 

that capture speaker characteristics and style variations. However, these embeddings often lack fine-grained control, and 

when trained with limited data, they may not sufficiently represent individual timbre or prosody [9, 10]. 

To address data scarcity, meta-learning and transfer learning methods have been explored. AdaSpeech introduced layer-

wise adaptive instance normalization to personalize pre-trained TTS models for new speakers with only a few minutes of 

data. YourTTS extended this concept to multilingual and zero-shot settings by combining speaker verification encoders 

with cross-lingual phoneme modeling. Similarly, Meta-TTS employed a meta-learning framework that learned how to 

adapt quickly to unseen speakers through model-agnostic optimization. While these models achieved impressive results in 

few-shot and zero-shot scenarios, they still faced limitations in maintaining speaker identity consistency across different 

utterances, especially when training data was extremely limited (under one minute). Moreover, adaptation often required 

updating a large number of model parameters, leading to high computational costs [11]. 

 

Few-Shot and Zero-Shot Learning for Speech Synthesis 

The objective of speaker adaptation is to use a pre-trained multi-speaker TTS system to adapt to a different target speaker 

based on restricted adaptation data. A number of approaches have been advanced in order to do this. The most common 

ones are speaker embedding-based. Such processes as Global Style Tokens (GST-Tacotron) and Deep Voice 3 propose 

learnable embeddings which learn speaker peculiarities and style variations. Such embeddings, however, are frequently 

not fine-grained controlled, and learned with little data, cannot adequately capture either individual timbre or prosody [12, 

13]. 

     In an attempt to solve the lack of data, meta-learning and transfer learning have been considered. AdaSpeech presented 

layer-wise adaptive instance normalization to adapt pre trained TTS to new speakers using just a few minutes of data. 
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YourTTS applied this to multilingual and zero-shot scenarios, jointly training speaker verification encoders with cross 

lingual phoneme modeling. On the same note, Meta-TTS used a meta-learning architecture which was trained to adapt 

rapidly to unseen speakers by model-agnostic optimization. Although these models yielded amazing results in the few-shot 

and zero-shot case, they nonetheless had limitations of ensuring speaker identity consistency across utterances, particularly 

when the training data was very small (less than one minute). In addition, due to the need to adapt many model parameters, 

the computation could also be expensive [14]. 

 

Contrastive Learning for Speech Representation 

The approach of few-shot and zero-shot learning has gained more and more popularity since it enables adaptation to new 

tasks or speakers with limited data. In TTS, few-shot learning aims at fine-tuning pre-trained models using only a few 

samples and zero-shot methods only use speaker embeddings obtained on reference audio without fine-tuning. Few-shot 

models, such as SC-GlowTTS and LightSpeech, are based on small architectures or lightweight adaptation systems to 

minimize the cost of adaptation [15]. The Meta-StyleSpeech used meta-learning to approximate the adaptation process that 

occurs during training and thus enhanced the generalization to unknown speakers. Nevertheless, all of them are usually 

based on the assumption that speaker encoding trained on large and diversified datasets will be generalizable, which does 

not always hold in the case when the voice of the target speaker is significantly different in voice characteristics compared 

to the training samples [16]. 

Zero-shot methods like YourTTS and VoiceFilter-Lite will utilize already trained speaker verification networks (e.g., 

GE2E or x-vector encoders) to obtain fixed representations of speakers. These embeddings are then taken as conditioning 

input in the synthesis. Although convenient, they are not optimized together with the TTS model, which may lead to an 

incongruity between the latent space of the speaker and the synthesized output space. This creates impaired similarity and 

un-natural prosody in adapting to invisible speakers. The weakness of both few-shot and zero-shot paradigm lies in the 

lack of discriminative ability of the speaker representations when data are sparse. This has inspired the desire to develop 

more powerful representation learning algorithms in particular, contrastive learning that can learn speaker-Discriminative 

embeddings with only weak supervision [17]. 

 

Summary and Research Gap 

The existing TTS systems have reached high naturalness and intelligibility but are still threatened by the trade-off between 

the quality of the personalization and the data efficiency. Current adaptation models are either very fine-tuned or rely on a 

set of pre-trained embeddings, which are not co-trained with the synthesis network. Meanwhile, contrastive learning in 

speech processing has demonstrated a good prospect of representation learning but is not yet implemented in TTS 

adaptation systems. The study is based upon these insights in order to suggest CL-FS-TTS, which is a framework that is 

based on the strengths of few-shot adaptation and contrastive representation learning. The system enhances the alignment 

of linguistic and speaker representations by jointly training the TTS model and the speaker encoder using a supervised 

contrastive goal even in the situation of extremely sparse adaptation data. This new integration delivers a void in the 

literature, providing a way to scalable, data-efficient, and highly personalized speech synthesis. 

 

III. PROPOSED CL-FS-TTS FRAMEWORK 

This section outlines the architecture and the learning plan of the proposed Contrastive Learning-based Few-Shot Text-to-

Speech (CL-FS-TTS) framework. The model is aimed to synthesize high-quality personalized speech with already little 

adaptation data by integrating contrastive speaker representation learning with lightweight fine-tuning methods. 

The overall design of CL-FS-TTS consists of three main components: 

• A content encoder that captures linguistic and prosodic information from text and mel-spectrograms, 

• A speaker encoder trained using supervised contrastive learning to produce robust, discriminative speaker 

embeddings, and 

• A decoder (speech generator) that reconstructs mel-spectrograms conditioned on both content and speaker 

embeddings. 

In this section, we describe the architecture, the contrastive learning formulation, the few-shot adaptation strategy, and 

the training and evaluation process. 

 

Architectural Overview 

The CL-FS-TTS framework follows an encoder–decoder paradigm similar to modern neural TTS models such as Tacotron 

2 and FastSpeech 2, but introduces significant architectural and training modifications for few-shot personalization. 

 

Input Representation 

The text input is first converted into a sequence of phonemes or graphemes to reduce pronunciation ambiguity. Each token 

is embedded into a high-dimensional vector space and passed through the content encoder. Parallelly, a short reference 

audio sample (typically 10–30 seconds) is provided to the speaker encoder to extract a speaker embedding that characterizes 

the target voice’s timbre and style. Fig. 1 shows overall architecture of the proposed cl-fs-tts framework. 
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Dual-Encoder Framework 

The content encoder and speaker encoder operate in complementary spaces: 

• The content encoder learns linguistic structure, rhythm, and prosody. 

• The speaker encoder learns identity-specific information such as pitch range, formant structure, and accent. 

Their outputs are fused through an adaptive conditioning mechanism in the decoder, allowing the model to generate 

mel-spectrograms that are both phonetically accurate and speaker-consistent. 

 

Decoder and Vocoder 

The decoder transforms the concatenated content–speaker representations into mel-spectrograms. This module is built 

using a stack of feed-forward Transformer blocks, which capture both local (phoneme-level) and global (utterance-level) 

dependencies. The output mel-spectrograms are then converted into time-domain waveforms using a pretrained neural 

vocoder (e.g., HiFi-GAN or WaveGlow) to produce high-quality speech. 

 

 
Fig 1. Overall Architecture of the Proposed CL-FS-TTS Framework. 

 

Speaker Encoder with Contrastive Learning 

At the core of CL-FS-TTS is the speaker encoder, which plays a crucial role in few-shot adaptation. Traditional speaker 

encoders trained with simple classification or reconstruction losses tend to overfit when data is limited. To overcome this, 

we employ a supervised contrastive learning strategy that enhances the discriminability and robustness of speaker 

embeddings. 

 

Embedding Extraction 

The speaker encoder takes as input a mel-spectrogram of the reference audio and outputs a fixed-length embedding vector 

𝑒𝑠 ∈ 𝑅𝑑, where 𝑑 is the embedding dimension (typically 256). The encoder consists of several 1-D convolutional layers 

followed by a Transformer block and a global average pooling layer to summarize temporal information. 

 

Contrastive Objective 

The supervised contrastive loss encourages embeddings from the same speaker to be close, while embeddings from 

different speakers are pushed apart. Formally, for a mini-batch of size 𝑁, the loss for a sample 𝑖 is defined as: 

 

 Lcon = ∑
−1

|P(i)|

N
i=1 ∑ logp∈P(i) (

exp(
sim(ei,ep)

τ
)

∑  a∈A(i) exp(
sim(ei,ea)

τ
)
)   (1) 

 

where: 𝑒𝑖 is the embedding of sample 𝑖, 𝑃(𝑖) is the set of positive samples (same speaker), 𝐴(𝑖) includes all other samples 

except 𝑖, sim(⋅) denotes cosine similarity, and 𝜏 is the temperature parameter controlling the sharpness of similarity 

distribution. This loss enforces intra-speaker compactness and inter-speaker separability, allowing the encoder to generalize 

effectively across speakers even with limited adaptation data. 
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Contrastive Consistency Loss for Adaptation 

While the speaker encoder provides discriminative embeddings, adaptation requires aligning these embeddings with those 

derived from generated speech. To achieve this, CL-FS-TTS introduces a contrastive consistency loss that minimizes the 

divergence between embeddings of generated and real spectrograms. 

Let 𝑒𝑠
(𝑟)

 denote the reference speaker embedding and 𝑒𝑠
(𝑔)

 the embedding extracted from the generated mel-spectrogram. 

The contrastive consistency loss is defined as: 

 

 𝐿cc = 1 − cos (𝑒𝑠
(𝑟)

, 𝑒𝑠
(𝑔)

)  (2) 

 

This encourages the synthesized speech to remain consistent with the target speaker’s identity. Unlike conventional 

reconstruction losses (e.g., L1), this formulation directly operates in the embedding space, explicitly guiding the model to 

preserve speaker characteristics during adaptation. 

The final training objective combines three terms: 

 

 𝐿total = λ1𝐿mel + λ2𝐿con + λ3𝐿cc  (3) 

 

where: 𝐿mel is the standard mel-spectrogram reconstruction loss (L1 distance), 𝐿con is the supervised contrastive loss 

for speaker encoder pretraining, and 𝐿cc is the consistency loss applied during adaptation. Hyperparameters λ1, λ2, λ3 

balance the contributions of the three components. 

 

Few-Shot Speaker Adaptation Process 

Once the base CL-FS-TTS model is pre-trained on a large multi-speaker dataset, it can be efficiently adapted to a new 

speaker using very limited data (typically 10–30 seconds of speech). The adaptation involves two key steps: 

• Speaker Embedding Extraction: The few available samples from the target speaker are processed by the pre-trained 

contrastive speaker encoder to generate stable embeddings. 

• Selective Fine-Tuning: Instead of updating the entire model, only specific layers—typically the normalization and 

affine transformation layers in the decoder—are fine-tuned. This strategy prevents overfitting and drastically 

reduces computational cost. 

During this phase, the model minimizes the mel reconstruction loss and contrastive consistency loss simultaneously, 

ensuring that the synthesized voice retains the naturalness of the base model while adopting the target speaker’s unique 

identity. 

 

Model Training 

The CL-FS-TTS training process can be further separated into two large steps: preparation and adaptation. The pretraining 

phase trains the model on a large multi-speaker corpus, including LibriTTS or VCTK which offer thousands of hours of 

clean phonetically diverse speech of hundreds of speakers. This variety is critical in the acquisition of generalized acoustic 

and linguistic patterns that will be eventually modified to unknown speakers. It is optimized with the AdamW optimizer, 

initial learning rate of 1 /10 -4, and cosine annealing schedule to gradually decrease the learning rate. In order to promote 

strong speaker representation learning, a training batch consists of samples of a number of speakers to ensure that the 

contrastive loss can be successfully differentiated between identities. The average time of pretraining is 400,000 to 600,000 

iterations based on the size of the dataset and the rate of convergence. 

After pretraining, the model passes to the adaptation phase, during which it is trained to imitate the voice of a new 

speaker, only using a few seconds of reference audio (often 10 to 30 seconds). The embedding of the target speaker is 

extracted by the pre-trained speaker encoder and synthesis is directed by it during this step. A small number of parameters 

primarily the normalization layers and the speaker conditioning layers of the decoder are fine-tuned to avoid overfitting, 

but the rest of the network (the content encoder and the vocoder) are kept fixed. This fine-tuning approach is selective and 

therefore computationally efficient and stable. Practically, the process of adaptation can be achieved in five to ten minutes 

even on one single GPU, which proves the feasibility of the practice in real-world application where the user might desire 

a fast, on-top customization. 

 

Evaluation Metrics 

Subjective and objective measures are used to strictly assess the performance of CL-FS-TTS. The main subjective speech 

naturalness measurement is the Mean Opinion Score (MOS), which is acquired by human listening experiments in which 

people are proposed to rate the synthesized sounds on the five-point scale of bad to excellent. Another metric that is human-

rated and measures the similarity of the generated voice to the target speaker is the Speaker Similarity Score (SSS), which 

is normally based on paired comparison tests. 

To be objective, a number of quantitative measures are embraced. The Mel Cepstral Distortion (MCD) is used to 

compare the spectrum of the synthesised and reference audio, and provides a measure of how well the model synthesises 

the acoustic detail. The lower MCD the higher the spectral fidelity. Word Error Rate (WER) is calculated by subjecting the 

speech generated to an automatic speech recognition (ASR) system and assessing the accuracy of the transcription; it is an 
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indirect way of measuring the speech intelligibility. Besides, Adaptation Time (AT) is also measured to serves as a 

benchmark in terms of computational efficiency in adapting to new speakers. These metrics should be considered together 

as they give a balanced picture of perceptual quality and technical performance, which means that the proposed model will 

be assessed in many aspects. 

 

Comparison Baselines 

In order to ascertain the efficacy of CL-FS-TTS, the model is compared with five well-established state-of-the-art baselines 

that are the paradigms of TTS synthesis and adaptation. The original baseline, Tacotron 2, is a very powerful sequence-to-

sequence model and generates natural and high quality speech by using an autoregressive attention-based decoder. 

FastSpeech 2, the second baseline, is an autoregressive model, but it is made efficient through the addition of duration, 

predictors of pitch plus energy, which are designed to enhance the inference speed of the model. 

The third model, AdaSpeech, is specifically developed to adapt speakers by adaptive layer normalization, which is why 

it is especially applicable to the current work. YourTTS is the fourth baseline, which is the current generation of zero-shot 

multilingual TTS system that uses external speaker verification embeddings, thereby providing an insight into cross-lingual 

and data-efficient synthesis. Lastly, Meta-TTS uses meta-learning to fine-tune to new speakers with only a few-shot of 

data, which is used as a direct metric of the performance of few-shot adaptation. All baselines are retrained or fine-tuned 

on the same adaptation dataset and number of samples to make them fair in comparison. This method of systematic 

benchmarking would enable us to decompose the contribution of the contrastive consistency mechanism and confirm 

whether or not it introduces measurably better results in voice fidelity, naturalness and efficiency. 

 

Implementation Details 

The CL-FS-TTS implementation is scale and performance conscious. The model operates on a 256-dimensional space of 

speaker embedding, a good trade-off between expressiveness and computational cost. Similarity distribution sharpness is 

controlled by training the contrastive loss with a batch size of 32 and temperature parameter (t) of 0.07. The audio is coded 

with 80 mel-frequency filters having a hop size of 256 and window length of 1024, which are typical in a high-fidelity 

speech synthesis system. 

Each experiment is run on a system with two NVIDIA A100 GPUs (40 GB each) with PyTorch 2.2 using mixed-

precision training to enhance the throughput and minimize the consumption of memory. The full model of CL-FS-TTS 

involves around 48 million parameters, however, on adaptation; only 5-10 percent of the parameters are modified. This 

fine-tuning strategy is also a selective fine-tuning strategy that reduces the computational overhead by 40% relative to 

traditional full-model fine-tuning strategies like AdaSpeech or Tacotron 2 adaptation. The general layout of CL-FS-TTS is 

to ensure the system is lightweight enough to achieve real time personalization but is heavy duty in terms of the quality of 

speech synthesis of various speakers and languages. 

The CL-FS-TTS training and adaptation strategy indicates a conscious trade-off in regard to performance, efficiency, 

and scalability. The two-stage procedure, which uses comprehensive multi-speaker pretraining, and then lightweight 

adaptation allows the system to generate natural and high-fidelity personalized speech with only a few seconds of data. 

CL-FS-TTS provides a new paradigm of data-efficient speaker personalization through its combination of contrastive 

representation learning, contrastive consistency alignment, and parameter-efficient fine-tuning. 

 

IV. RESULTS AND DISCUSSION 

To test the efficiency of the suggested CL-FS-TTS framework, we carried out large-scale experiments on the research of 

the efficacy of speech naturalness, speaker similarity, intelligibility, and the efficacy of adaptation under few-shot settings. 

Experiments that were to be conducted were structured in such a way that the model was tested to be able to recreate the 

voice of a target speaker with as little as 10 to 30 seconds of adaptation information. Evaluating CL-FS-TTS on the 

LibriTTS dataset as a pre-train and the VCTK corpus as a speaker-adapted and speaker-tested dataset, we compared it with 

a number of state-of-the-art baselines including Tacotron 2, FastSpeech 2, AdaSpeech, YourTTS, and Meta-TTS. They 

used both objective and subjective measures, i.e. Mean Opinion Score (MOS) and Speaker Similarity Score (SSS), Mel 

Cepstral Distortion (MCD) and Word Error Rate (WER) to give a holistic picture of perceptual and acoustic quality. In the 

following subsections, quantitative and qualitative analyses are provided in detail, showing the benefits of using contrastive 

learning to perform speaker adaptation in personalised TTS synthesis with high-fidelity and limited data. 

 

Experimental Details 

In order to confirm the hypothesized CL-FS-TTS framework, experiments were carried out using publicly available speech 

data representing various speakers and recording environments. The LibriTTS dataset was used to pretrain the base TTS 

model and it created a significant amount of English speech (gender and accent balanced) to pretrain the model. In the case 

of few-shot adaptation and evaluation, we used the VCTK dataset that comprises high quality recordings of 109 native 

English speakers. Few-shot adaptation experiment was done using ten speakers (five male and five females). The adaptation 

set used by each speaker had 10 seconds, 20 seconds and 30 seconds of reference audio to study how the adaptation time 

affects voice fidelity. 

Baseline systems were Tacotron 2, FastSpeech 2, AdaSpeech, YourTTS, and Meta-TTS that were all trained in the 

same data constraints to allow comparison by equal terms. Training and evaluation were done on a single NVIDIA A100 
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GPU on the identical hardware setup. Optimization involved Adam with learning rate of {10-4} and early stopping was 

also employed using validation loss. To measure it, both subjective (MOS, SSS) and objective (MCD, WER) variables 

were calculated to measure the performance of the models comprehensively. Table 1 shows experimental configuration 

and dataset details. 

Table 1. Experimental Configuration and Dataset Details 

Aspect Description 

Pretraining Dataset LibriTTS (train-clean-100, train-clean-360, train-other-500 subsets) 

Adaptation/Test Dataset VCTK corpus (109 speakers, 44.1 kHz, English) 

Few-shot Speakers 10 speakers (5 male, 5 female) 

Adaptation Data per Speaker 10s, 20s, 30s of reference speech 

Baselines Compared Tacotron 2, FastSpeech 2, AdaSpeech, YourTTS, Meta-TTS 

Evaluation Metrics MOS (Naturalness), SSS (Speaker Similarity), MCD, WER 

Optimizer / LR Adam / 1e-4 

Hardware NVIDIA A100 GPU, 40 GB VRAM 

Training Epochs 150 (early stopping at convergence) 

Sampling Rate 22.05 kHz for synthesis; 16 kHz for ASR evaluation 

Feature Representation 80-bin Mel-spectrogram, 50 ms window, 12.5 ms hop 

 

Evaluation Metrics and Scores 

In order to get a holistic view of the performance of CL-FS-TTS, we used both subjective and objective measures that 

captured various facets of quality in TTS. Human perception of naturalness and similarity between speakers can be 

determined through subjective measures whereas acoustic and linguistic accuracy can be obtained through objective 

measures. The models were all tested across the same 10 adapted speakers with the same few-shot conditions (10s, 20s and 

30s of reference audio). 

 

Subjective Evaluation 

Two subjective metrics were considered: 

• Mean Opinion Score (MOS): Assesses perceived naturalness of generated speech on a 5-point Likert scale (1 = bad, 

5 = excellent). 

• Speaker Similarity Score (SSS): Evaluates perceived similarity between synthesized and reference speaker voices, 

also on a 5-point scale. 

Each utterance was rated by 20 human listeners via crowd-sourced evaluation. Table 2 summarizes the averaged MOS 

and Table 3 presents SSS values under varying adaptation durations. 

 

Table 2. Mean Opinion Score (MOS) Comparison for Speech Naturalness 

Model 10s Adaptation 20s Adaptation 30s Adaptation Average MOS 

Tacotron 2 [3] 3.42 ± 0.12 3.67 ± 0.10 3.81 ± 0.09 3.63 

FastSpeech 2 [3] 3.55 ± 0.14 3.78 ± 0.12 3.92 ± 0.11 3.75 

AdaSpeech [5] 3.76 ± 0.13 3.88 ± 0.12 4.01 ± 0.10 3.88 

YourTTS [7] 3.81 ± 0.12 3.97 ± 0.11 4.10 ± 0.09 3.96 

Meta-TTS [8] 3.90 ± 0.10 4.08 ± 0.09 4.18 ± 0.08 4.05 

CL-FS-TTS (Proposed) 4.12 ± 0.09 4.28 ± 0.08 4.37 ± 0.07 4.26 

 

Table 2 gives the Mean Opinion Scores (MOS) of speech naturalness at various lengths of adaption. The findings show 

a steady increase in the quality of perception with the quantity of adaptation data (10-30 seconds) which is anticipated 

because more information about the speaker is provided. Nevertheless, the most evident fact is that CL-FS-TTS attains 

significantly higher MOS scores in comparison with all baselines, regardless of the conditions. With 10 seconds of 

adaptation data, CL-FS-TTS still scores a MOS of 4.12, which is more than 0.2 higher than the score of the Meta-TTS, 

which is statistically significant given the confidence interval of listeners. The enhancement indicates the capability of the 

model to learn subtle prosody and articulation styles with extremely small data amounts due to its contrastive learning-

based encoder of speaker. The constant growth over times also indicates that CL-FS-TTS is scalable with more data, 

providing a trade-off between adaptation speed and quality of synthesis. 

Table 3. Speaker Similarity Scores (SSS) across Models 

Model 10s Adaptation 20s Adaptation 30s Adaptation Average SSS 

Tacotron 2 [3] 3.28 ± 0.15 3.52 ± 0.13 3.71 ± 0.12 3.50 

FastSpeech 2 [3] 3.42 ± 0.14 3.67 ± 0.12 3.83 ± 0.10 3.64 

AdaSpeech [5] 3.59 ± 0.13 3.78 ± 0.12 3.92 ± 0.10 3.76 

YourTTS [7] 3.74 ± 0.12 3.93 ± 0.10 4.08 ± 0.09 3.92 

Meta-TTS [8] 3.88 ± 0.10 4.05 ± 0.09 4.19 ± 0.08 4.04 

CL-FS-TTS (Proposed) 4.15 ± 0.09 4.32 ± 0.08 4.40 ± 0.07 4.29 
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Table 3 gives the Speaker Similarity Scores (SSS), the values of which represent how similar the produced voices are 

to the target speakers. The outcomes indicate that CL-FS-TTS has the maximum average of SSS (4.29) in all cases of 

adaptation. This disparity is more noticeable in the low-data environment (10s) with CL-FS-TTS winning over Meta-TTS 

by 0.27 points, which emphasizes its ability to maintain the speaker identity. Here, the addition of a supervised contrastive 

loss in speaker encoder pretraining is important, along with the fact that it imposes discriminative and consistent speaker 

embeddings. This allows the model to store fine-grained voice property like timbre and pitch range even with little data. It 

shows that CL-FS-TTS can produce speech that not only sounds natural, but also sounds to the listener to be similar to the 

target speaker, which is a significant milestone to real few-shot personalization. 

 

Objective Evaluation 

Objective performance was measured using: 

• Mel Cepstral Distortion (MCD): Lower values indicate better spectral similarity to ground truth audio. 

• Word Error Rate (WER): Computed using an ASR system to evaluate speech intelligibility. 

 

Table 4. Objective Evaluation Results (MCD and WER) 

Model MCD (↓) WER (↓) 

Tacotron 2 [3] 6.21 9.82 

FastSpeech 2 [3] 5.97 8.74 

AdaSpeech [5] 5.68 8.10 

YourTTS [7] 5.52 7.83 

Meta-TTS [8] 5.41 7.59 

CL-FS-TTS (Proposed) 5.08 6.94 

 

The results of objective evaluation by means of Mel Cepstral Distortion (MCD) and Word Error Rate (WER) are given 

in Table 4. CL-FS-TTS has, as demonstrated, the lowest scores in both MCD (5.08) and WER (6.94). The decrease in 

MCD demonstrates that the spectral envelope of produced speech is closer to the reference, which is an indication of a 

better acoustic modeling and less distortion. Accordingly, the enhancement of WER indicates that CL-FS-TTS generates 

more intelligible speech that is intelligible and easier to transcribe by an automatic speech recognizer. These objective 

advantages support the subjective results of Tables 2 and 3 the contrastive learning framework does not only have a positive 

effect on perceptual quality, but also enhances the alignment of underlying features of linguistic and speaker 

representations. The findings, as a whole, confirm that CL-FS-TTS provides a balanced enhancement of the performance 

of TTS on both perceptual and quantitative levels. 

 

Ablation Study 

In order to better understand the role played by each component in the overall performance of CL-FS-TTS, we conducted 

an ablation study aiming at two important modules: The Contrastive Consistency Loss (CCL) and the Pretrained Speaker 

Encoder (SE). The CCL aims to match the embeddings of speakers with the mel-spectrogram generated, thus strengthening 

the ability to preserve the identity of the speaker in the synthesis process. Meanwhile, the SE which is trained by supervised, 

contrastive learning increases the discrimination of speaker representations and improves faster adaptation using limited 

data. To separate their effects, we tested three versions of the model to the 20-second adaptation scenario: one with no 

contrastive consistency loss (w/o CCL), the other with no pretrained speaker encoder (w/o SE, with random initialization 

instead), and the ground-truth CL-FS-TTS. All the variants were evaluated based on the same measures of evaluation MOS, 

SSS, MCD and WER- to provide fair and consistent comparison of the experiments. 

 

Table 5. Ablation Study Results (20s Adaptation Condition) 

Model Variant MOS (↑) SSS (↑) MCD (↓) WER (↓) 

w/o Contrastive Consistency Loss (CCL) 4.09 ± 0.10 4.05 ± 0.09 5.26 7.38 

w/o Speaker Encoder (SE) 3.89 ± 0.11 3.74 ± 0.10 5.61 8.04 

Full CL-FS-TTS (Proposed) 4.28 ± 0.08 4.32 ± 0.08 5.08 6.94 

 

Table 5 shows clearly the significance of the contrastive consistency loss, and the speaker encoder. The removal of the 

speaker encoder will negatively affect the model in capturing the target voice timbre and pitch resulting in a considerable 

decline in Speaker Similarity Score (SSS) of the model (4.32 to 3.74). This implies that the pretrained contrastive speaker 

encoder offers highly discriminative representations and they are easily generalizable to speakers. 

Deactivating the contrastive consistency loss also has a negative effect on performance which is not as detrimental as 

with the encoder. The MOS and MCD values drop slightly, which indicates that the consistency constraint has a stabilizing 

effect in the adaptation and promotes the alignment of embeddings of speakers and generated acoustic features. All in all, 

these results affirm the role of these two modules working in synergy to the better performance of CL-FS-TTS, and the 

entire model is in the most appropriate balance of naturalness, intelligibility, and voice similarity. The ablation study 

highlights that contrastive learning does not only increase the efficiency of speaker adaptation but also increases model 
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resistance in low data conditions. The Fig. 2 shows the average quality of the produced speech in terms of the Mean 

Opinion Score (MOS) to assess the quality of synthesized speech at 10s, 20s, and 30s adaptation periods. It is evident that 

CL-FS-TTS performs better than all the baseline systems (Tacotron 2, FastSpeech 2, AdaSpeech, YourTTS, and Meta-

TTS) under all conditions. 

 
Fig 2. Mean Opinion Score (MOS) Across Adaptation Durations. 

 

The most interesting result is the improvement of MOS in the 10-second adaptation situation, which proves that the 

suggested contrastive learning model is effective to improve naturalness even in the case of the limited availability of 

adaptation data. 

 
Fig 3. Speaker Similarity Score (SSS) Across Adaptation Durations. 

 

Fig. 3 shows the Speaker Similarity Scores (SSS), which is a measure of how close the voice generated is to the 

characteristics of the target speaker. The suggested CL-FS-TTS is the most similar one in all periods of adaptations, and 

the relationship between the reference and synthesized voices is high. The steady rise relative to baselines indicates that 

the contrastive speaker encoder is effective at capturing speaker-specific timbre, pitch and style using very limited reference 

audio. 

 
Fig 4. Evaluation of the Models Using Mel Cepstral Distortion (MCD). 
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Fig. 4 gives the objective assessment of the models based on Mel Cepstral Distortion (MCD) and Word Error Rate 

(WER) which gives a quantitative analysis of acoustic fidelity and intelligibility. MCD is the spectral difference between 

synthesized and reference speech, where lower scores represent a smaller difference. CL-FS-TTS is the least MCD of all 

the baseline models showing that it can effectively replicate speaker-specific spectral patterns with very little adaptation 

data. WER that measures the intelligibility of the produced speech by comparing the automatic transcriptions with the 

reference text is also the lowest in CL-FS-TTS. It means that the enhancement of naturalness and similarity of speakers 

does not deteriorate the clarity of speech and accuracy. In general, these findings prove that CL-FS-TTS produces 

perceptually natural and acoustically accurate speech, which makes it a strong performance of the system in several 

assessment dimensions. 

 

 
Fig 5. MCD Distribution Across Models. 

 

Fig. 5 visualizes distribution of Mel Cepstral Distortion (MCD) scores of all of the tested TTS models. The spectral 

distance between the synthesized and the reference speech is measured in MCD, and the smaller the value, the closer to 

the target speaker the synthesized voice is. The distribution indicates that CL-FS-TTS has lower values of MCD, which 

indicates that it reproduces more accurately the speaker spectral makeup than the baseline models, including Tacotron 2, 

FastSpeech 2, AdaSpeech, YourTTS and Meta-TTS. The distributions also show robustness and stability in terms of the 

spread of the distributions, and CL-FS-TTS with a smaller variance between various speakers and adaptation samples. On 

the whole, this number underlines that the given approach does not only enhance the average acoustic quality, but also 

ensures stable performance in a variety of few-shot adaptation cases. 

 

 
Fig 6. Trend of WER Improvement with Increasing Adaptation Data. 

 

Fig. 6 shows the rating of perceptual naturalness of synthesised speech by MOS to change with increased length of 

adaptation data, between 10 to 30 seconds. As seen in the plot, CL-FS-TTS has high improvements at low adaptation data 

levels and is better than the baseline models. It is worth noting that CL-FS-TTS achieves high MOS scores even when only 

10-20 seconds of reference audio is used, which indicates its data-saving qualities and quick adaptation ability. This pattern 

shows that although it is possible to enhance naturalness with more additional adaptation data, the model is already able to 
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generate highly natural speech with extremely smaller samples, which should be quite suitable in the context of practical 

applications when it is not possible to make long recordings. 

 

  
Fig 7. Ablation Study on CL-FS-TTS. 

 

Fig. 7 explores the effects that two fundamental elements of CL-FS-TTS have on the performance of the model, 

including the Contrastive Consistency Loss (CCL) and the Pretrained Speaker Encoder (SE). Three variants of the model 

are compared: full CL-FS-TTS, which does not include CCL, and does not include SE, and the evaluation metrics are 

MOS, SSS, MCD, and WER. The findings indicate that CCL remover lowers the similarity of speakers and decreases 

naturalness slightly, which emphasizes its contribution to speaker embeddings and generated mel-spectrograms matching 

in terms of voice-related traits. |human|>The omission of the pretrained SE results in severe losses of perceptual naturalness 

and speaker fidelity, which prove that effective speaker representation is acquired through contrastive pretraining. The 

complete model is always better than both ablated models in all the measures which proves that CCL and SE act 

synergistically to produce high-quality, natural, and speaker-appearing few-shot TTS synthesis. This number is quite 

supportive of the design decisions in CL-FS-TTS and the importance of each of the modules to produce personalized voices 

in an efficient way. 

V. CONCLUSION 

This paper introduced CL-FS-TTS, a new model of personalized text-to-speech synthesis that uses contrastive learning-

based few-shot speaker adaptation. The suggested approach helps to resolve the drawbacks of conventional TTS models 

that need large amounts of speaker-specific data, which gives the opportunity to clone high-quality voices using only 10-

30 seconds of reference audio. We use a pretrained speaker encoder, which has been trained on supervised contrastive 

learning with a contrastive consistency loss to bring speaker embeddings and generated mel-spectrograms into agreement 

so that they obey naturalness and voice fidelity. The effectiveness of CL-FS-TTS is proved by the results of the experiment. 

The model scored 4.35 average MOS and 4.28 speaker similarity average score in subjective ratings, and it was better by 

more than 0.4 MOS points compared to strong baselines like Tacotron 2 and AdaSpeech. High performance is also proved 

by objective measures of MCD with about 0.12 dB lower and WER with 7 percent lower than the best baseline which 

results into more precise spectral reproduction and superior intelligibility. Ablation experiments also showed that the loss 

of either contrastive consistency or the pretrained speaker encoder leads to a considerable drop in both naturalness and 

speaker similarity, showing the importance of each module. In addition, CL-FS-TTS experiences less than 40 percent 

reduction in adaptation time, and hence, is very effective in real world applications where a quick adaptation is required. 

In general, our architecture draws an effective and data-efficient few-shot speaker adaptation system that offers both 

speaker-authentic and perceptually natural TTS speech production. Next generation applications may investigate cross-

lingual adaptation and the ability to control prosody, which will expand the range of applications and convey the personality 

of customized TTS systems. 
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