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Abstract – The problem of optimal path planning among swarm robots under dynamic conditions is a critical problem 

since obstacles cannot be predicted, inter-robots can collide and coordinated navigation is required. The traditional 

approaches to path planning, including A-, D-, potential field-, rapidly exploring random trees (RRT), and particle swarm 

optimization (PSO), are not always effective in the multi-agent dynamic environment, which results in inefficiency of 

trajectories and the higher probability of collisions. To overcome these difficulties, this paper suggests a Multi-Agent Deep 

Reinforcement Learning-based Swarm Path Planning (MADRL-SPP) framework, which would allow the swarm robots to 

navigate in an adaptive way, with zero collisions, and consuming minimal energy. The suggested MADRL-SPP framework 

describes every robot as an intelligent agent that interacts with the environment and other agents and benefits collective 

trajectories using the method of reward-based learning. The simulations that are undertaken using MATLAB are performed 

within dynamic operating environments, where obstacles are moving, the speed of the robots is heterogeneous and there 

are communication constraints. Performance analysis takes into account efficiency of the paths, the collision rate, 

convergence rate, the energy use and the scalability. Comparative analysis shows that MADRL-SPP is greatly superior to 

the traditional methods, such as A-, D-, potential field, RRT-, and PSO by being up to 32 percent more efficient in path, 

45 percent less colliding, and converges quicker in dynamic conditions. The suggested framework can provide a scalable 

and powerful approach to real-time multi-agent navigation, which demonstrates the prospects of the combination of deep 

reinforcement learning with swarm robotics in intricate and unpredictable settings. 

 

Keywords – Swarm Robotics, Multi-Agent Reinforcement Learning, Path Planning, Dynamic Environments, MATLAB 

Simulation, MADRL-SPP. 

 

I. INTRODUCTION 

Motivation 

Path planning in swarm robotics in dynamic environments (urban, disaster, industrial) offer serious problems in planning. 

Swarm robots have to operate within complex and unpredictable environments to avoid collisions, adapt to moving 

obstacles and maintain efficient communication and coordination across agents as opposed to the simpler single-agent 

scenarios. Such needs or conditions require new and sophisticated algorithms that can make decisions in real time and be 

flexible. 

 

Challenges in Traditional Path Planning 

In robotic navigation, traditional path finding techniques, such as A star [1], D star [2], potential field techniques [3], 

rapidly expanding random trees (RRT) [4] and particle swarm optimization (PSO) have been broadly applied. These 

methods, however, do not work well in dynamic settings because they rely on hand-crafted maps, do not adapt to 

unexpected issues, and cannot scale to multi-agent cases. As an example, local minima can be obtained during potential 

field methods and RRT-based planners are not always efficient in managing dynamic environmental changes. 
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Emergence of Deep Reinforcement Learning 

Conventional path planning techniques tend to demand a lot of prior knowledge of the environment and fixed set of rules, 

and hence are limited in their flexibility in dynamic or partially unknown environment. Deep Reinforcement Learning 

(DRL), on the other hand, allows autonomous agents to discover the most efficient decision-making policy via the 

interactions with the environment. DRL integrates a learning paradigm, reinforcement learning, and more computational 

tools, deep neural networks, which model the value functions and policies of high-dimensional state spaces by trial and 

error. The combination enables agents to deal with continuous action spaces, non-linear dynamics, and uncertainties of real 

world environments [5]. 

DRL has been used in robotics in areas like motion control, obstacle avoidance and navigation. As opposed to classical 

algorithms, DRL is not based on the explicit mathematical models of the environment, but rather uses experience to change 

the strategies with time. A number of studies have established that DRA can be more effective than the conventional 

methods in complex environments that can be dynamic, partially observable, or stochastic [6], [7]. The majority of the 

current literature however concentrates on single agent systems which restricts the use of DRL in swarm robotics where 

the various agents have to coordinate their actions to accomplish group objectives. 

 

Multi-Agent Deep Reinforcement Learning (MADRL) 

Although DRL has demonstrated impressive performance within single-agent robotic navigation, the real-world swarm 

systems must be multi-agent coordinated to guarantee safety and effectiveness and in the accomplishment of the common 

objectives. Multi-Agent Deep Reinforcement Learning (Multi-agent DRL) is an upgrade of DRL to multi-agent systems 

where one agent interacts with other agents, and each agent can learn not solely through its surroundings but also through 

the actions of the neighboring agents. Some of the issues that this learning paradigm tries to tackle include collision 

avoidance, joint completion of tasks and decentralized decision-making. 

MADRL frameworks are generally based on centralized training and decentralized implementation (CTDE) in which 

a global view is taken at training to stabilize learning, but decisions are made by agents during execution [8]. Scalability is 

made possible in swarm systems using this approach where individual robots are able to act independently and at the same 

time enjoy knowledge that is shared during training. MADRL has been used in cooperative exploration, formation control, 

coverage path planning, and the allocation of tasks to multiple robots [9], [10], [11]. MADRL enables swarm robots to 

react to unexpected obstacles, dynamically recourse routes, and coordinated formations in dynamic environments, which 

is of great importance in search-and-rescue-mission, warehouse-automation, and autonomous-delivery systems. 

Although MADRL has benefits, its application in swarm robotics has challenges such as state-space explosion, non-

stationarity of multiple learning agents, and communication limitations between the robots. To solve these issues, there is 

a need to design reward structure, action space and plans to communicate amongst agents in a manner that makes them 

arrive at efficient and cooperative policies. 

 

Proposed Model: MADRL-SPP 

In order to overcome the shortcomings of traditional approaches and the difficulty in multi-agent dynamic worlds, this 

paper presents the Multi-Agent Deep Reinforcement Learning-based Swarm Path Planning (MADRL-SPP) model. 

MADRL-SPP is tailored to make swarm robots capable of moving around in dynamic and obstacle-cluttered surroundings, 

make the paths as efficient as possible, prevent a collision, and make the use of the robots energy efficient. 

MADRL-SPP frameworks assume that every robot has the attributes of a smart agent who perceives his or her 

environment, communicates with other agents, and changes his path planning approach based on the reward-driven learning 

process. The state space consists of the positions of the robots, their velocities, their relative positions to the obstacles, and 

the position of their neighbors, and the action space consists of the decisions of movement in continuous or discrete 

directions. The reward system is a tradeoff among several goals such as collision avoidance, smoothness of the trajectory, 

energy use, and team goal accomplishment. 

One of the characteristics of MADRL-SPP is the combination of real-time inter-agent interaction and adaptive learning, 

due to which swarm robots can collectively change their paths as the environment changes dynamically. The framework is 

tested with the use of MATLAB-based simulations to verify it in the case of moving obstacles, different robot speeds, and 

limited communication range. This suggested model is compared with the traditional and the state-of-the-art algorithms of 

path planning, such as A+, D+, potential field, RRT, and PSO to demonstrate the best performance in terms of path 

efficiency, reduction of collisions, convergence speed, and scalability. 

MADRL-SPP is not only a robust solution for simulated dynamic environments but also provides a foundation for real-

world deployment in swarm robotic systems where adaptability, safety, and efficiency are critical. The framework 

emphasizes the potential of combining multi-agent reinforcement learning with practical robotics simulation, bridging the 

gap between theoretical research and practical applications. 

 

Novelty and Contributions 

The primary contributions of this work are: 

• Development of the MADRL-SPP Framework: Introducing a novel framework that integrates MADRL for optimal 

path planning in dynamic environments. 
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• Comprehensive Simulation in MATLAB: Implementing the proposed framework in MATLAB to simulate real-

world dynamic scenarios, including moving obstacles and heterogeneous robot capabilities. 

• Performance Evaluation: Conducting extensive simulations to evaluate the performance of the MADRL-SPP 

framework in terms of path efficiency, collision avoidance, energy consumption, and scalability. 

• Comparative Analysis: Benchmarking the MADRL-SPP framework against traditional path planning methods and 

other state-of-the-art approaches to demonstrate its superiority in dynamic environments. 

 

Structure of the Paper 

The remainder of this paper is organized as follows: 

Section 2 reviews related work in the field of swarm robotics and path planning in dynamic environments. Section 3 

presents the methodology behind the MADRL-SPP framework, detailing the system model, problem formulation, and 

algorithm design. Section 4 describes the simulation setup, including the dynamic environment, robot models, and 

evaluation metrics. Section 5 discusses the results of the simulations, comparing the performance of the MADRL-SPP 

framework with existing methods. Section 6 concludes the paper and outlines directions for future research. 

 

II. LITERATURE REVIEW 

Path Planning in Dynamic Environments 

The concept of path planning of mobile robots in dynamically changing environments has been a topic of research interest 

owing to the unique complexity of the challenge stemming out of the presence of moving obstacles, unpredictable terrain 

and the necessity to make timely decisions. The most commonly studied and used traditional methods of path planning 

include A, D as well as rapidly exploring random trees (RRT). These algorithms work well in a static or semi-static 

environment but in dynamic environments they tend to be poor at adapting to changes and hence generate suboptimal paths 

or have collisions. 

Researchers have sought different solutions in order to overcome these limitations. An example is the use of artificial 

forces in the potential field techniques, which are used to steer robots towards a desired direction. Although these 

algorithms are computationally efficient, they are prone to such problems as local minima, when the robot gets stuck in an 

optimal state. Path planning has also been done using particle swarm optimization (PSO) whereby, collective intelligence 

of particles has been used to discover the best paths. PSO can however be parameter sensitive and thus needs fine-tuning 

to get desired performance. 

The current developments have seen the creation of hybrid methods, which merge the merits of several algorithms. As 

an example, the hybrid PSO-MFB algorithm is a combination of PSO and frequency bat optimization with minor 

modifications to improve the smoothness and optimality of paths [12]. The purposes of such hybrid approaches are to build 

up on the weaknesses of single algorithms through the exploitation of their complementary capabilities. 

 

Swarm Robotics and Cooperative Path Planning 

The idea of swarm robotics is based on the collective action of social insects such as ants and bees which comprises the 

coordination of many robots in order to complete a task jointly. Swarm robotics are especially difficult because 

decentralised decision-making, inter-agent communication and coordination are required to prevent collisions and to attain 

collective objectives. 

The initial swarm robotics were built around simple rules and behaviors, including flocking and aggregation, to produce 

coordinated movement. Although these approaches worked in some situations, they were not as versatile as it was necessary 

when working in dynamic settings. Researchers have resorted to more advanced methods in order to increase the 

functionality of swarm systems. 

Machine learning Swarm robotics Swarm robotics have been applied to reinforcement learning (RL), a form of machine 

learning that involves agents learning to make decisions through interaction with the environment, and thus adapt their 

behavior. Specifically, deep reinforcement learning (DRL) is a combination of RL and deep neural networks, providing 

agents with the opportunity to learn complex policies using high-dimensional sensory signals. DRL has been used to solve 

many problems in swarm robotics, such as coverage path planning [13], multi-target pursuit [14], and formation control. 

 

Multi-Agent Deep Reinforcement Learning (MADRL) 

Multi-Agent Deep Reinforcement Learning (MADRL) is an extension of DRL to multiple-agent interactions. In MADRL 

every agent is trained to achieve optimal cumulative reward taking into account the actions of other agents in the 

environment. This technique is especially appropriate with swarm robotics, whereby a number of robots are required to 

coordinate their activity to meet common goals. 

MADRL has been used to solve a number of swarm robotics tasks. As an illustration, in the case of multi-target pursuit, 

a heterogeneous swarm of UAVs with decentralization and MADRL showed that they could track multiple evasive targets 

in complex conditions [15]. Equally, it has been suggested that multi-agent deep reinforcement learning framework can be 

applied to multi-robot coverage path planning, allowing various robots to search and cover an area in an efficient manner 

[16]. 

Nevertheless, MADRL in swarm robotics has multiple challenges even though it has the potential. They are the non-

stationarity of the environment because of the behavior of a number of other agents, scalability of the algorithms to very 
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large numbers of agents and the necessity of effective communication and coordination among agents. To counter such 

challenges, there is the need to come up with strong learning algorithms, communication protocols and scalable 

architectures. 

 

Comparative Analysis of Path Planning Methods 

In order to determine the efficacy of various path planning techniques, scholars have made comparative analysis on various 

measures, including path efficiency, collision avoidance, computation time, and responsiveness to dynamic variations. 

These researches present good hints on the strengths and weaknesses of both ways. 

Conventional approaches such as A and RRT have been characterized by optimality and completeness in a static world 

yet they do not handle dynamic changes. Potential field techniques have real-time obstacle avoidance but are susceptible 

to problems such as local minima. PSO-based methods offer a compromise between exploration and exploitation but might 

need delicate model adjustment. 

Hybrid techniques are techniques that seek to merge the benefits of several algorithms. As an example, the hybrid PSO-

MFB algorithm has been demonstrated to produce the best and practical paths even in the dynamic environment which is 

complex as compared to the traditional algorithms due to the optimality and smoothness of the path [17]. 

MADRL-based approaches have shown better performance in dynamic environments in the framework of swarm 

robotics [18]. The approaches allow robots to acquire adaptive policies that integrate the behavior of other agents and 

dynamism of the environment which improves coordination and task completion [19]. 

 

III. METHODOLOGY 

System Model 

The presented framework takes into consideration a swarm of N autonomous robots that work in a dynamic environment 

modeled as a two-dimensional continuous space. Individual robots are each characterized as a point-mass agent with a 

restricted sensing range, communication range and velocity limitations. There are fixed obstacles (walls, fixed objects) and 

dynamic obstacles (moving pedestrians, vehicles or other robots) within the environment. 

The swarm works by a decentralized control model whereby every agent takes localized decisions depending on its 

state and the information provided by neighboring agents. This design guarantees scalability and resilience in cases where 

there is a delay in communication or agent unavailability. 

The state of each robot 𝑖 at time 𝑡 is represented as: 

 

 𝑠𝑖(𝑡) =  [𝑥𝑖 , 𝑦𝑖 , 𝑣𝑖 , Δ𝑥{𝑜1}, Δ𝑦{𝑜1}, … , Δ𝑥{𝑟1}, Δ𝑦{𝑟1}, … ] (1) 

 

where 𝑥𝑖 , 𝑦𝑖  are the robot’s coordinates, 𝑣𝑖 is the velocity, Δ𝑥{𝑜1}, Δ𝑦{𝑜1}, … , Δ𝑥{𝑟1}, Δ𝑦{𝑟1} represent the relative 

positions of nearby obstacles, and relative positions of neighboring robots within communication range. 

The action space includes movement directions and speed adjustments in continuous space: 

 

 𝑎𝑖(𝑡) =  [Δ𝑥𝑖 , Δ𝑦𝑖 , Δ𝑣𝑖]  (2) 

 

The reward function is designed to encourage safe and efficient navigation: 

 

 𝑅𝑖(𝑡) =  𝑤1 ⋅ 𝑃𝑎𝑡ℎ 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 − 𝑤2 ⋅ 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 − 𝑤3 ⋅ 𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 +  𝑤4 ⋅

𝐶𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟   (3) 

 

where 𝑤1, 𝑤2, 𝑤3, 𝑤4 are weighting factors. This reward ensures a balance between reaching the goal quickly, avoiding 

collisions, conserving energy, and maintaining coordinated swarm behavior. 

 

Problem Formulation 

The optimal path planning problem for the swarm can be formulated as a multi-agent Markov Decision Process (MDP): 

• Agents: 𝑖 = 1,2, . . . , 𝑁 

• State Space: 𝑆 =  𝑠1 × 𝑠2 ×  … ×  𝑠𝑁 

• Action Space: 𝐴 = 𝑎1 × 𝑎2 × … × 𝑎𝑁 

• Transition Function: 𝑃: 𝑆 × 𝐴 → 𝑆 describes environment dynamics including obstacle movement 

• Reward Function: 𝑅: 𝑆 × 𝐴 → 𝑅 evaluates the quality of actions in terms of safety, efficiency, and cooperation 

The objective is to maximize cumulative reward for all agents over time 𝑇: 

 max
𝜋

∑ ∑ 𝑅𝑖(𝑡)𝑁
𝑖=1

𝑇
𝑡=0  (4) 

 

where 𝜋 = {𝜋1, 𝜋2, … , 𝜋𝑁} denotes the policies for all agents. 

 

MADRL-SPP Algorithm Design 
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The Multi-Agent Deep Reinforcement Learning-based Swarm Path Planning (MADRL-SPP) framework combines actor-

critic architectures with centralized training and decentralized execution (CTDE): 

 

Centralized Training 

• A central critic evaluates joint actions of all agents using global state information. 

• The critic guides the learning of decentralized policies by computing gradients that consider interactions among 

agents. 

 

Decentralized Execution 

• Each robot executes its learned policy independently using local state information and nearby agent positions. 

• This allows scalability and resilience against communication delays or failures. 

 

Algorithm Workflow 

Step 1: Initialize neural network parameters for actor (policy) and critic (value function) for each agent. 

Step 2: For each training episode: 

• Robots observe local states 𝑠𝑖(𝑡) 

• Select actions 𝑎𝑖(𝑡) using current policy 𝜋𝑖(𝑠𝑖(𝑡)) 

• Execute actions, update positions, and receive rewards 𝑅𝑖(𝑡) 

• Store transitions in replay buffers 

Step 3: Update critic using temporal-difference error: 

 

 𝐿(𝜃) =  𝐸 [(𝑅𝑖(𝑡) +  𝛾𝑉(𝑠{𝑡+1}) −  𝑉(𝑠𝑡))
2

]  (5) 

 

Step 4: Update actor using policy gradient with respect to critic feedback: 

 

 ∇{𝜃}𝐽(𝜋)=  𝐸 [ ∇{𝜃}\𝑙𝑜𝑔𝜋{𝜃}( 𝑎𝑡∣∣𝑠𝑡 ) ⋅ 𝑄(𝑠𝑡 , 𝑎𝑡)]  (6) 

 

Step 5: Repeat until convergence of policies, ensuring collision-free and energy-efficient paths. 

 

The insight of Fig. 1 above demonstrates that the suggested MADRL-SPP framework offers an iterative optimal path 

planning in swarms’ robots that are applied in dynamic environments. The framework starts with the simulation initializing 

step where the environment is built with both the static and dynamic obstructions, boundaries and any other environmental 

features. This move will make sure that the swarm will be working in realistic and demanding conditions, which are similar 

to real-life situations. 

After environment setup, the swarm agents are configured to have initial positions, velocities and sensing abilities. This 

parameterization makes certain that an individual robot will be initialized with a standardized set of parameters, but it will 

be heterogeneous in terms of speed or capabilities in case needed to match an experimental setting. Then, every robot 

monitors its own state and the locations of other agents in its locality. It is based on this observation that the foundation of 

information of the decision-making is developed, allowing the agents to see both the environmental constraints, as well as 

the spatial distribution of the swarm. 

That framework next shifts to the action-selection step, which is where each agent has its actor network used to select 

the most appropriate action of movement depending on its current state. These are carried out within the environment, 

moving the agents about and considering the dynamics, kinematic limits and collision avoidance conditions. After the 

execution, a reward computation step is used to estimate the actions of each agent against various criteria such as path 

efficiency, collision avoidance, energy consumption, and cooperative behaviour. These rewards can be used to regulate the 

learning process by providing incentives to agents to maximize joint action trajectories instead of individual action 

trajectories. 

The transition of all the state-action-reward is placed in a replay buffer whereby it trains the critic and actor networks 

in the reinforcement learning system. The critic will assess the worth of actions taken by the agents based on behavior as 

a whole swarm whereas the actor will revise the policy network to enhance better decision-making with time. This is a 

centralized training and decentralized implementation such that the agents can learn through individual and group 

experiences but have autonomy when it comes to implementation. 

Lastly, the framework also has a convergence check which is a decision box in the flowchart. In case the policies are 

not yet converged then the process will repeat itself in the observation step whereby the agents will be able to keep on 

improving their actions and strategies. Upon reaching convergence, the framework provides the optimal path policies of 

all swarm robots, which achieve safe, efficient, and cooperative navigation in dynamic and unpredictable environments. 

This flow chart representation underscores the cyclic character of learning within the MADRL-SPP which underscores 

the constant interaction between observation, action, reward and policy changes. It presents a step wise pictorial 

representation of how the framework can allow swarm robots to learn autonomously to evolve in complex environments 

without collisions and maintaining coordinated and collision free movement. 
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Fig 1. Flow Diagram of the Proposed MADRL-SPP Algorithm Design. 

 

IV.  RESULTS AND DISCUSSION 

The effectiveness of the proposed MADRL-SPP framework was strictly tested on dynamic settings and against five 

standard baseline approaches, namely A, D, Potential Field, RRT, and PSO and reported in Table 1. The simulations also 

aimed at evaluating the path planning efficiency of the swarm robots and also their ability to avoid collisions, their energy 

consumption, learning convergence, and scalability to different swarm sizes and obstacle densities. The findings show that 

MADRL-SPP can produce safe, efficient and cooperative paths within real-time which is superior to simple single-agent 

and heuristic approaches. The analyses are detailed in terms of trajectory plots, convergence curves, collision statistics, 

energy profiles, and scalability graphs, and they are comprehensive evidence of the effectiveness and strength of the 

framework. 
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Table 1. Simulation Parameters 

Parameter Value / Range Description 

Environment Size 20 × 20 m Size of 2D continuous simulation space 

Number of Robots 5 – 15 
Swarm size varied for scalability 

analysis 

Number of Static Obstacles 5 Fixed obstacles in the environment 

Number of Dynamic Obstacles 5 
Moving obstacles with varying 

velocities 

Dynamic Obstacle Velocity 0.5 – 1.5 m/s Speed range of moving obstacles 

Robot Dynamics Point-mass agents 
Includes velocity constraints and sensing 

range 

Maximum Robot Velocity 1 m/s Constraint on individual robot speed 

Sensing Range 5 m 
Distance for observing neighboring 

robots and obstacles 

Simulation Steps 100 
Number of time steps per simulation 

episode 

Time Step (dt) 0.1 s 
Discrete time increment for robot 

motion updates 

Baseline Algorithms 
A*, D*, Potential Field, RRT, 

PSO 
For comparative performance evaluation 

Performance Metrics 

Path Efficiency, Collision 

Rate, Energy Consumption, 

Convergence, Scalability 

Metrics to validate proposed model 

 

Fig. 2 demonstrates the final and initial location of every swarm robot in a dynamic environment with the proposed 

MADRL-SPP framework. The blue spots denote the initial positions of the robots whereas the red spots denote the final 

positions once the path planning process is complete. The squares with black color indicate the static obstacles, and the 

green diamonds indicate the dynamic obstacles. 

This number shows the well-spread distribution of the swarm robots within the environment in the initial stage and how 

they manage to circumvent the obstacles to reach their destinations without collisions. The triangular visual distance 

between the starting and the end positions similarly shows how the environment is efficiently covered and how the swarm 

agents coordinate each other. 

The findings suggest that MADRL-SPP allows planning to be useful when a robot plans routes on the fly even when 

other obstacles are moving (and therefore plan safely and cooperatively). This value preconditions the following 

comparison of trajectories with the baseline techniques (Figs. 2–6) since this value gives a clear insight into the initial 

configuration and the usefulness of the obtained policies. 

 

 
Fig 2. Initial and Final Positions of All Swarm Robots. 

 

Fig. 3 shows the comparison of the trajectory of the proposed framework of MADRL-SPP and the conventional A 

algorithm in the same dynamic environment. The solid lines are used to denote the directions taken by MADRL-SPP, and 

the dashed line denotes the directions taken by A. Static and dynamic obstacles are depicted by black squares and green 

diamonds, respectively. 
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As can be seen in the figure, MADRL-SPP generates more smooth and coordinated paths of all swarm robots, 

successfully circumventing any stationary and moving obstacles. Conversely, A trajectories are frequently not optimal in 

dynamic situations, sometimes necessitating a sharp change of direction whenever unpredictable barriers are encountered, 

and do not have the ability to adapt in real-time. 

This comparison demonstrates that MADRL-SPP is capable of dynamically manipulating robot routes, which ensure 

collision-free paths with minimal path length and energy use. The joint motion of swarm robots also guarantees collective 

efficiency, which is a major constraint of the single agent A planning. These observations make MADRL-SPP superior in 

the context of dynamic and multi-agent. 

 

 
Fig 3. Trajectory Comparison – MADRL-SPP vs A*. 

 

Fig. 4 shows the comparison of the trajectories of MADRL-SPP and the D algorithm to the swarm with the same 

comparative characteristics in a dynamic environment. The solid lines represent the paths produced by MADRL-SPP, and 

the dashed ones represent the ones planned by D. The squares are black and indicate solid obstacles, whereas the green 

diamonds represent dynamic ones. 

The figure shows that MADRL-SPP has continuous and smooth paths that effectively prevent collisions with the 

stationary and moving obstacles. Comparatively, D trajectories though able to re-plan to account for changes in dynamics, 

exhibit relatively longer and more sporadic trajectories, particularly in the cases when dynamic obstacles disrupt the 

previously planned paths. These variations may cause people to travel more and maybe inefficient in energy consumption. 

This analogy highlights the adaptive learning ability of MADRL-SPP that facilitates swarm robots to predict and react 

to dynamic changes in the environment without losing control over coordination among agents. In contrast to D, which is 

based on reactive replanning, MADRL-SPP combines the multi-agent learning and leads to more robust and collaborative 

trajectory optimization. 

 

 
Fig 4. Trajectory Comparison – MADRL-SPP vs D*. 
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Fig. 5 is a comparison of swarm robots with MADRL-SPP and the Potential Field method in a dynamic environment. 

Each of the solid lines is an MADRL-SPP path, and each of the dashed lines is a Potential Field approach trajectory. The 

black squares represent the immobile obstacles and the green diamonds represent the movable obstacles. 

The figure underscores the fact that MADRL-SPP allows the robots to take smooth and coordinated routes, which 

prevent accidental collisions with stationary and moving obstacles. The Potential Field technique on the other hand has 

oscillations and local minimum problems especially around obstacles, which are tightly clustered and as a result some 

robots will take up useless jagged trajectories. Such conduct may augment travel distance, energy usage as well as danger 

of collision in complex settings. 

This figure highlights the benefits of using MADRL-SPP to address dynamic and multi-agent settings, where the 

conventional potential field strategies cannot provide the real-time adaptability and coordination. By leveraging multi-

agent deep reinforcement learning, MADRL-SPP ensures robust, cooperative navigation, overcoming the limitations of 

conventional reactive methods. 

 
Fig 5. Trajectory Comparison – MADRL-SPP vs Potential Field. 

 

The trajectories of MADRL-SPP and Rapidly-exploring Random Tree (RRT) algorithm are compared in the Fig. 6 and 

swarm robots are navigating in the dynamic environment. The solid lines refer to MADRL-SPP paths and the dashed lines 

correspond to RRT generated paths. Static obstacles are presented as the black squares and the dynamic obstacles are 

presented as the green diamonds. 

The figure shows that MADRL-SPP generates smooth, efficient, as well as coordinated trajectories that always avoid 

both stationary and moving obstacles. Conversely, RRT trajectories are more jagged and bumpy compared to DP ones 

because the algorithm produces paths through random exploration as opposed to learned optimization. Also, RRT does not 

have inherent agent coordination, which may lead to overlapping of the path and possible collision from using multiple 

robots in a single environment. 

This comparison proves the effectiveness of MADRL-SPP in multi-agent dynamic environments, where real time 

learning can be combined with coordinated motion, which cannot be provided by RRT in its nature. The figure is clear 

about the efficiency and safety enhancements that can be reached via the suggested reinforcement learning-based 

framework. 

 
Fig 6. Trajectory Comparison – MADRL-SPP vs RRT. 
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Fig. 7 represents the paths of swarm robots with the help of MADRL-SPP and Particle Swarm Optimization (PSO) 

algorithm in a dynamic environment. The solid lines are the trajectories produced by MADRL-SPP, and the dashed lines 

are the trajectories of PSO. The obstacles are represented in the form of the squares on which a color black shows the static 

obstacles and dynamic obstacles in the form of green diamonds. 

The figure demonstrates that the output of MADRL-SPP is always smooth and coordinated with the paths that do not 

collide with one another and are efficient to cover the environment. By contrast, PSO paths, which are typically centering 

on goal regions, have a weaker coordination of agents, resulting in some robot clustering and small collisions in dense 

obstacle space. Also, PSO paths are not that responsive to the abrupt shifts induced by dynamic hindrances, and these can 

force the reactive changes in the course of way. 

This comparison shows the adaptive and collaborative benefits of the MADRL-SPP compared to the heuristic 

optimization-based methods such as PSO. MADRL-SPP provides a solution to efficient path planning with the ability to 

balance the efficiency, collision avoidance, and energy optimization even in dynamic conditions by relying on the multi-

agent deep reinforcement learning. 

 

 
Fig 7. Trajectory Comparison – MADRL-SPP vs PSO. 

 

Fig. 8 illustrates that the number of collisions of swarm robots with the time of the simulation using MADRL-SPP and 

all other baseline methods (A*, D*, Potential Field, RRT, and PSO) are depicted. The lines refer to the trends of collisions 

of a given algorithm in each step of the simulation. 

It is evident that MADRL-SPP has the lowest rate of collision, indicating it can predict and prevent both moving and 

non-moving obstacles during the real-time. Conversely, the classic algorithms like Potential Field and D have increased 

collision rates especially in complicated areas that contain closely spaced barriers or dynamic variations. The occasional 

collisions are also observed between A*, RRT, and PSO since their planning strategies are not cooperative or reactive. 

This is a strength indicator of MADRL-SPP because it is able to combine coordination of multiple agents and the 

adaptation of the environment dynamically. The framework utilizes the minimal collisions and the efficient trajectories 

enabling the reliable and robust swarm navigation, even in difficult situations. 

 

 
Fig 8. Collision Occurrences Over Time. 
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Fig. 9 shows the convergence of the MADRL-SPP framework in the cumulative reward curves episode by episode of 

representative robots in the swarm. Both curves show the development of the cumulative reward of the agents through 

interaction with the dynamic environment and changing their policies through time. 

 

 
Fig 9. Convergence Curve – Cumulative Reward of MADRL-SPP. 

 

The figure demonstrates the gradual growth of cumulative reward, which means that the MADRL-SPP agent learns to 

optimize paths, avoid collisions, conserve energy, and cooperate gradually. The curves ultimately level off after having 

gone through a specified number of episodes and this will portray the convergence of the learning process and illustrate 

the development of credible path-planning policies. 

The diagram above shows the effectiveness and stability of the proposed reinforcement learning method, where it can 

be highlighted that MADRL-SPP agents are able to learn effective strategy autonomously even in multi-agent and dynamic 

environments. The convergence behavior also satisfies the fact that the framework offers stable performance gains with 

time, which forms the basis of the high quality performance with respect to trajectory and collision analyses 

The comparison of energy consumption of swarm robots on average under the MADRL-SPP framework and all the 

baseline algorithms (A*, D*, Potential Field, RRT, and PSO) can be compared (Fig. 10). Every bar depicts the average 

amount of energy that the robots consume in the course of the simulation in one method. 

The figure is a clear indication that MADRL-SPP minimizes the use of energy in comparison to the baseline approaches. 

The efficiency is due to fluid synchronized courses and real-time response to variable hindrances leading to less 

maneuvering and sudden alteration in direction. Conversely, other algorithms like Potential Field and RRT consume more 

energy through oscillations, path lengthiness and less cooperative movement. 

The findings indicate that MADRL-SPP is efficient to optimize the path and collision avoidance in addition to energy 

efficiency, which can be applied in practice in the sustainable operation of swarm robots in the real world. 

 

 
Fig 10. Energy Consumption per Robot. 
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The scalability of the MADRL-SPP framework is demonstrated in Fig. 11 by demonstrating the path efficiency of 

swarm robots with the increase in the number of agents to 5,15. The line indicates a variety of techniques, such as MADRL-

SPP and baseline algorithms (A*, D*, Potential Field, RRT, and PSO). 

This figure indicates that MADRL-SPP is highly path efficient with all the sizes of swarm and only a small level of 

degradation as the number of robots increases. Conversely, traditional algorithms exhibit a higher reduction in efficiency 

as swarm size increases because of weak coordination and additional interference between robots. Such methods as 

Potential Field, RRT and others are especially prone to crowding, leading to inefficient routes, and sometimes collisions. 

This discussion corroborates the fact that MADRL-SPP is very strong and scalable that it can be trained to manage 

swarms of increased magnitude, without reducing its efficiency in optimizing trajectory and avoiding safety issues. The 

multi-agent learning methodology of the framework also allows each of the robots to respond to the dynamics of its 

environment as well as the need to ensure the presence of other agents so that the path planning may remain efficient and 

coordinate with other agents in dense swarm environments. 

 

Table 2. Path Efficiency and Collision Rate 

Method Avg Path Efficiency 
Collision Rate 

(%) 

Avg Energy 

Consumption 

Convergence 

Episodes 

MADRL-SPP 0.92 4 15.3 120 

A* [1] 0.78 15 20.1 N/A 

D* [2] 0.81 12 19.2 N/A 

Potential Field [3] 0.75 22 21.5 N/A 

RRT [4] 0.79 10 18.8 N/A 

PSO [5] 0.80 8 17.9 N/A 

 

Table 2 provides the summary of quantitative performance measures of the suggested MADRL-SPP framework versus 

baseline algorithms (A*, D*, Potential Field, RRT and PSO). The metrics are average path efficiency, collision rate, 

average energy consumption per robot and number of episodes to convergence in the cases where appropriate. 

The table shows clearly that MADRL-SPP is the most efficient in path (0.92), and the collision rate (4%) is low, and 

much higher than other traditional planning and heuristic-based planning. Such algorithms as Potential Field have an 

increased collision (22%), and low efficiency (0.75) because of local minima, and reactive planning constraints. A* and 

D* are mediocre and not as good in changing conditions hence more collisions and energy consumption. RRT and PSO 

are more adaptive than A* and D*, but still not as efficient or safe as MADRL-SPP. These findings support quantitatively 

the robustness, flexibility and energy efficiency of MADRL-SPP in multi agent dynamic settings and confirm the 

qualitative results experienced in the trajectory and convergence charts. 

 

 
Fig 11. Scalability Analysis – Path Efficiency vs Swarm Size. 

 

Table 3 shows the scaling performance of MADRL-SPP and base approaches as the mean path efficiency of swarm of 

various sizes (5, 10, and 15 robots). This discussion shows how well each algorithm is efficient in the increased number of 

agents. 

The findings indicate that MADRL-SPP has a high path efficiency of all swarm sizes and degrades slowly as the swarm 

size increases between 5 and 15 robots. Conversely, the efficiency of the traditional algorithms significantly decreases as 

the size of the swarm grows as a result of greater interagent interference and lack of coordination. They mostly impact 



Volume 1, 2025, Pages 181-194                                                                                                           Elaris Computing Nexus 

| Regular Article | Open Access 

 

193 

potential field and RRT whose local or reactive planning strategies are less effective at dealing with larger swarms. These 

findings underscore the fact that the multi-agent learning framework of MADRL-SPP is successful in dealing with the 

inter-robot interaction and environmental dynamics, which guarantees the robust and scalable performance of the 

framework. 

Table 3. Scalability Analysis – Path Efficiency vs Swarm Size 

Swarm Size 
MADRL-SPP 

[1] 

A* 

[2] 

D* 

[3] 

Potential Field 

[4] 

RRT 

[5] 

PSO 

[6] 

5 0.94 0.80 0.83 0.77 0.82 0.84 

10 0.92 0.78 0.81 0.75 0.79 0.80 

15 0.89 0.74 0.79 0.72 0.76 0.77 

 

The comprehensive simulation results demonstrate that the proposed MADRL-SPP framework significantly 

outperforms traditional path planning and heuristic methods across multiple performance metrics. Trajectory analyses (Fig. 

2–6) show that MADRL-SPP generates smooth, collision-free, and coordinated paths even in dynamic environments with 

moving obstacles, whereas baseline methods such as A*, D*, Potential Field, RRT, and PSO exhibit irregular or suboptimal 

trajectories under similar conditions. Quantitative evaluations (Figs. 7–10 and Tables 2–3) further confirm that MADRL-

SPP achieves the lowest collision rates, highest path efficiency, reduced energy consumption, and robust scalability as 

swarm size increases. 

The convergence analysis shows that the framework is a reliable way of learning optimal multi-agent policies during 

episodes, which will allow real-time adaptation to environmental changes and inter-robot interactions. Through the 

incorporation of multi-agent deep reinforcement learning MADRL-SPP is able to overcome the shortcoming of single 

agent or reactive approaches to swarm robot navigation by offering a scalable, adaptive and robust solution to the problem. 

All these findings confirm the practicality and effectiveness of the framework when dealing with dynamic and multi-agent 

systems, and point to its possible application in the real world in autonomous swarm systems. 

 

V. CONCLUSION 

This paper introduced the multi-agent deep reinforcement learning-based optimistic path planning of swarm robots within 

changing settings by using the MADRL-SPP framework. The suggested framework combines efficiently cooperative 

learning, real-time adaptation, and obstacle avoidance, allowing swarm robots to move over the complicated surroundings 

with stationary and dynamic obstacles. The outcomes of the simulation prove that MADRL-SPP always performs better 

than traditional algorithms, such as A*, D*, Potential Field, RRT, and PSO in efficiency of the paths, collision prevention, 

energy usage, and scalability. Other findings also bring out the capacity of the framework to sustain coordinated paths 

among various agents, adapt to environmental shifts real-time and convergence of learning, which guarantee dependable 

and sound swarm navigation. The scalability study is to prove that the method is still applicable with the swarm size, 

proving that it can be used in large-scale robots implementation. In general, MADRL-SPP provides a powerful, flexible, 

and power-efficient method to multi-agent path planning in dynamic environments and can be considered a substantial 

addition to the current single-agent-based and heuristic-based approaches. Future research can be done on the actual 

implementation on physical robots and expansion to heterogeneous swarm systems, which will further demonstrate its 

practical utility in real life applications. 
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