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Abstract – The waveform-based data is growing exponentially in the biomedical, communication, and industrial fields, 

which has generated an urgent need to develop unsupervised methods of learning the complex high-dimensional signal 

structures. Classical clustering techniques typically make use of one measure of similarity which does not reflect the 

inherent variability of waveforms patterns due to amplitude distortions, phase shifts and noise artifacts. In order to 

overcome such limitation, this paper will present an intelligent clustering framework called Intelligent Multimetric 

Agglomerative Clustering Network (IMAC-Net) which incorporates different distance metrics such as cosine, Euclidean, 

and cityblock into a single hierarchical structure. The proposed IMAC-Net is adaptive which benefits pattern discrimination 

in noisy signal conditions by weighting these metrics appropriately to balance between global and local similarity measures. 

Synthetic and real-world waveform dataset is used to verify the framework, and the performance is checked with the help 

of Silhouette Score, Davies-Bouldin Index, Calinski-Harabasz Score, and Cluster Purity. They are compared to the 

traditional methods, such as K-means, Hierarchical Clustering (single-metric), and Spectral Clustering. As experimental 

findings show, IMAC-Net exhibits better cluster cohesion, noise tolerance, and interpretation of waveform groups, which 

is much better as compared to the baseline models. The presented solution provides a generalizable and scalable solution 

to waveforms analytics, which opens the path to discovering patterns in high-dimensional, complex signal domains. 

 

Keywords – Multimetric Clustering, Waveform Analysis, High-Dimensional Signal Processing, Unsupervised Learning, 

Agglomerative Hierarchical Model. 

 

I. INTRODUCTION 

The growth in the extent of signal data in high dimensions in contemporary engineering and scientific systems has resulted 

in the growing need of powerful and understandable clustering strategies. Large volumes of multi-feature data are produced 

in real-time in applications like biomedical waveform analysis, radar signal recognition and communication waveform 

diagnostics. These signals are highly complex, non-linear, and noisy and this makes the task of discovering concealed 

structural patterns incredibly complicated. Conventional clustering algorithms that usually rely on a single distance 

measure or simplistic statistical models are unlikely to work well in such settings and give inconsistent or unreliable 

clustering results [1]. 

Waveform clustering is one of the key applications in unsupervised pattern discovery and allows researchers to cluster 

signals with morphological similarities without any labeled data. K-means [2], DBSCAN [3] and hierarchical 
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agglomerative clustering (HAC) [4] techniques have been extensively applied here. The techniques however are based on 

one similarity measure normally the Euclidean distance-the parameter that lacks the multidimensionality characteristic of 

waveform data. In addition, single-metric clustering can be to scale sensitivity and outlier noise, and thus, it limits 

extrapolation between heterogeneous data sources. 

This problem is made worse in high dimensional signal spaces by the curse of dimensionality. The more the dimensions 

the flatter the distance distributions there is because the pairwise distances between data points are less discriminative. As 

a result, the traditional clustering algorithms do not ensure significant distances between the clusters. This weakness 

underscores the need to develop a new paradigm of clustering that would be able to combine several complementary metrics 

to increase discrimination without losing calculational efficiency and interpretability. 

 

Necessity of Multimetric Learning for Waveform Data 

The waveform data are generally defined by a changing amplitude, phase and frequency components, that interrelate in 

non-linear manner. Such rich structural diversity cannot be adequately represented as one distance measure. An example 

is the Euclidean distance that effectively represents absolute spatial variations but not angular correlations. Conversely, the 

cosine distance is a distance that quantifies angular similarity between waveform vectors but ignores variation in magnitude 

whereas cityblock (Manhattan) distance is more resistant to sparsity variations [5]. 

An aggregate of these measures gives a more comprehensive picture on signal similarity. A combination of both 

measures is capable of capturing both global and local traits so that the outcome of the clustering is more accurate. It is 

based on this idea that the proposed model Intelligent Multimetric Agglomerative Clustering Network (IMAC-Net) 

emerges, that proposes a common learning process to combine the various distance views with a dynamic fusion process 

[6]. 

 

Problem Statement 

Although the algorithm of clustering has made a great advancement, the majority of the current waveform clustering 

algorithms have three known issues: 

• Single-metric shortcoming: Traditional methods are based on a single distance measure, which fails to capture the 

complex geometry among waveform data [7]. 

• Sensitivity to noise and scale: Waveform signals usually have random noise and amplitude variations which skew 

intra-class boundaries [8]. 

• Nondynamic learning: Most clustering methods have fixed threshold values or linkage rules that do not 

dynamically change to suit the changing data distributions, especially in dynamically changing or heterogeneous 

signal scenarios [9]. 

All of these problems diminish the accuracy of clustering, intra-cluster variance, and result interpretability. 

Consequently, there is an urgent necessity of a smart structure that is able to compare various similarity measurements at 

the same time and dynamically shapes the clustering borders as the program executes. 

 

Research Gap 

Hierarchical clustering and waveform segmentation studies have been done previously which discussed partial solutions 

to these problems. Although studies on hybrid clustering methods or distance learning have demonstrated promise, they all 

either require heavy computational overhead or use deep learning architecture which requires extensive training data. 

Additionally, there are not a lot of models, which offer a combined method of distance fusion, adaptive weight optimization, 

and iterative stability evaluation. Such an end-to-end, interpretable, and adaptive system is the weakness of the current 

system around which the gap filling of IMAC-Net centers. 

The innovation on IMAC-Net is the fusion strategy through a multimetric multimetric that defines to combine the use 

of cosine, Euclidean, and cityblock distances in an optimistic dynamic strategy with weights. This guarantees that the 

relationship of the waveforms is recorded in multiple geometrical perspectives and the results provide better discrimination 

even in case of noise, phase distortion, or changes in amplitude. Also, the hierarchical agglomerative mechanism 

implemented into IMAC-Net offers explainable clustering and is therefore applicable in the analytical field of biomedical 

signal interpretation or communication waveform diagnostics. 

 

Objectives of the Study 

The key goals of this study are the following: 

• To make an intelligent framework of clustering to combine several distance measure tools to better represent 

waveforms similarity. 

• To build a strong distance fusion mechanism with weight optimization to mix cosine, Euclidean, and cityblock 

distances. 

• To use an agglomerative clustering structure using an average linkage to model local and global waveform 

associations. 

• To add an adaptive convergence validation loop which allows stability and avoids over- or under-clustering. 
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• To test the proposed model on the synthetically generated and the real waveform datasets, a comparison to the 

traditional algorithms like K-means, DBSCAN, and single-metric HAC. 

 

Significance of the Proposed Approach 

The given IMAC-Net framework is especially relevant to the contemporary signal analytics. The system separates 

overlapping clusters more effectively by integrating several distance measures, which makes certain that both magnitude-

dependent and directional property of a waveform are obtained. The fusion process is used as a noise suppressor, which 

allocates metric influence in proportion to their contribution at one iteration. Moreover, the adaptive feedback mechanism 

enables the clustering mechanism to improve to an optimal state, responding to non-stationary or non-Gaussian noise 

instances which often occur in datasets of waveforms. Besides that, hierarchical characteristic of IMAC-Net gives 

interpretability a very important characteristic that is usually lacking in deep clustering models. The hierarchical tree 

(dendrogram) form generated during the clustering process allows the analysts to see the relationships between the 

categories of waveforms at various levels of granularity.  

 

Contributions of the Research 

The key findings of this research can be outlined in the following way: 

• A new multimetric fusion methodology that integrates the use of cosine, Euclidean and cityblock distance 

measures into hierarchical clustering. 

• An adaptive distance fusion parameter dynamic weighting machinery that optimizes the parameters used in fusion 

of distance in the clustering process to increase accuracy and strength. 

• Adaptive convergence feedback loop that constantly checks stability of the clusters so that the system stops at an 

optimal point of partition. 

• An algorithmically efficient architecture, which can be scaled to waveform spaces of high dimensionality without 

using supervised training. 

• An all-inclusive performance analysis that proves high inter-cluster separability and less within-cluster variance 

than conventional clustering techniques. 

The other parts of this paper are organized in such a way that they make clear and logical flow of ideas. Section 2 

provides the review of the literature, which is more detailed and gives the major developments in the field of the waveform 

clustering and opens the gaps that guided this research. Section 3 goes on to state the experimental configuration and 

proposed model in detail, the datasets, preprocessing strategies and parameter configurations used in the evaluation of 

performance. Section 4 is followed by a detailed analysis of the experimental results, comparison and interpretation of the 

results to support the strength of the suggested method. Section 5 closes the paper with a recap of the significant 

contributions and comments on the potential future steps of the development of the field of waveform clustering and high-

dimensional signal analysis. 

 

II. PREVIOUS STUDIES 

A number of researches have examined the sector of waveforms clustering and pattern discovery in high dimensional signal 

spaces, each of which is valuable but fails to address some of these gaps. 

  

Table 1. Comparative Analysis of Previous Studies on Waveform Clustering Techniques 

Ref. No. Method / Model Core Concept Advantages Limitations 

[2] 
K-means 

Clustering 

Uses Euclidean distance 

for partitioning waveform 

data into fixed clusters 

Simple and 

computationally 

efficient 

Poor performance in 

non-linear and noisy 

waveform data 

[4] 
Hierarchical 

Clustering 

Forms nested clusters 

using linkage criteria like 

Ward or average linkage 

Produces interpretable 

dendrograms 

Sensitive to noise and 

distance metric 

selection 

[13] 
DTW-Based 

Spectral Clustering 

Aligns temporal patterns 

using dynamic time 

warping before clustering 

Captures time-shift 

variations effectively 

Computationally 

expensive and less 

scalable 

[14] 
PCA + GMM 

Hybrid 

Reduces feature dimension 

before probabilistic 

clustering 

Improves separability 

and reduces 

redundancy 

Loses fine-grained 

temporal information 

during reduction 

[15] 

Deep Autoencoder 

Embedding + K-

means 

Learns non-linear 

waveform representations 

for clustering 

Improves accuracy 

and feature abstraction 

Requires large training 

data and lacks 

adaptability 

 

The common clustering algorithms, including k-means, hierarchical clustering, and Gaussian mixture model (GMM) [10], 

have been extensively employed because they are simple and easy to understand. Nonetheless, these techniques tend to fail 
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when used in non-linear, noisy signal environments that are complex and whose waveform properties are not strictly 

Euclidean or can be separated linearly. 

Previously, researchers have tried to improve the strength of clustering by using feature extraction methods and 

dimensionality reduction methods which include Principal Component Analysis (PCA) [11], t-SNE and autoencoders [12]. 

These strategies eased the signal structure at the expense of fine-grained temporal users required in distinguishing 

waveforms. In the meantime, works based on Dynamic Time Warping (DTW) and spectral clustering [13] offered superior 

temporal alignment at the cost of high computational cost in cases of large data sets. To address the problem of metric 

dependency, newer methods have proposed multi-metric or hybrid models of clustering that integrate distance measures 

e.g. cosine, cityblock, and correlation distance measures. These techniques tried various facets of similarity between 

waveforms but did not have adaptive fusion, thus the clusters were not formed in the most optimal way in diverse conditions 

of the signal. Further, most of these models were based on fixed-weight strategies, which reduced their adaptability when 

handling varying signal distributions on a dynamic basis [16]. 

A small number of deep learning-based methods have been studied, such as CNN- and LSTM-based representations, 

to be learned like hierarchical waveform representations and then clustered. Though these approaches enhanced accuracy 

in clustering, they usually needed extensive datasets of annotates in order to train and did not specifically model inter-

metric relationships. The rationale of the current work is the efforts to fill the gap between metric fusion and adaptive 

clustering [17]. The suggested IMAC-Net model perceives together several measures of distance into an agglomerative 

clustering methodology, enriched with adaptive weighting processes, which respond dynamically to the underlying signal 

structure. In such a manner, the proposed study will provide a balance among interpretability, flexibility, and computational 

efficiency a feature that has not been adequately considered in previous studies on waveform pattern discovery. 

As shown in Table 1, although both traditional and hybrid clustering methods have enhanced the accuracy of clustering 

and interpretability, both methods do not tend to be dynamically scaled to accommodate the variations in signal 

complexities. To counter this shortcoming, the IMAC-Net model has been developed, combining multi-metric fusion, 

adaptive agglomeration as one of the benefits to obtain less weak and context-dependent waveform pattern discovery. 

 

III. PROPOSED INTELLIGENT MULTIMETRIC AGGLOMERATIVE CLUSTERING NETWORK (IMAC-NET) 

The Intelligent Multimetric Agglomerative Clustering Network (IMAC-Net) proposed is aimed at overcoming the 

drawbacks of the conventional clustering algorithms in processing high-dimensional data of waveforms. Most classical 

algorithms of clustering, including K-means or single-metric hierarchical clustering, are based on one similarity measure; 

this limits their ability to represent non-linear relationships between non-linear signal characteristics. IMAC-Net presents 

a multimetric paradigm that relates multiple distance metrics into one framework to improve the separation of classes of 

waveforms. IMAC-Net workflow comprises of five key steps namely data preprocessing, multimetric distance calculation, 

distance fusion, hierarchical agglomerative clustering and adaptive convergence validation. The architecture is also robust 

to noise and intra-class variability, yet the clustering accuracy is very high on a variety of categories of waveforms. 

 

 
Fig 1. Block Diagram of the Proposed IMAC-Net Framework. 
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The general process of the suggested Intelligent Multimetric Agglomerative Clustering Network (IMAC-Net) is 

illustrated in Fig. 1. This system takes the input waveform data as starting, which can be a variety of high-dimensional 

signal inputs like biomedical records, communication records, or a sensor array. The input signal is preprocessed initially, 

by de-noising, normalization to eliminate the undesirable fluctuations and to normalize the amplitude range. 

The several distance measures cosine, Euclidean and cityblock in particular are then calculated on the instances of 

waveforms in different perspectives to measure how similar they are. The framework does not utilize just one similarity 

measure and instead uses a distance fusion step, in which such measures are integrated in adaptive weighted combinations. 

This is to make sure that both angular and spatial relationships between data points are captured in the process of clustering. 

This fused distance matrix is then sent into an Agglomerative Clustering engine using average linkage which progressively 

combines similar groups of waveforms using the composite distance data. Lastly, there is the output stage whereby the 

separated cluster groups are produced and this exposes the concealed structural patterns in the waveform data. This pipeline 

is modular and lies at the core of IMAC-Net to facilitate the efficient and robust waveform discovery in diverse amounts 

of noise and at diverse dimensional complexities. 

 

Multimetric Distance Computation 

Given a dataset 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑁}, where each 𝑥𝑖 ∈ 𝑅𝑑  represents a waveform vector of 𝑑 features, IMAC-Net computes 

three distinct distance measures between waveform pairs: 

 

Euclidean Distance 

 

 𝐷𝐸(𝑥𝑖 , 𝑥𝑗) = √∑ (𝑥𝑖𝑘 − 𝑥𝑗𝑘)
2𝑑

𝑘=1   (1) 

 

Cosine Distance 

 

 𝐷𝐶(𝑥𝑖 , 𝑥𝑗) = 1 −
𝑥𝑖⋅𝑥𝑗

|𝑥𝑖|⋅|𝑦𝑖|
  (2) 

 

Cityblock (Manhattan) Distance 

 

 𝐷𝑀(𝑥𝑖 , 𝑥𝑗) = ∑ |𝑥𝑖𝑘 − 𝑥𝑗𝑘|𝑑
𝑘=1   (3) 

 

All the distance measures represent distinct features: Euclidean is focused on the absolute spatial variations, cosine 

focuses on angular relationships, and cityblock focuses on deviations on a component-by-component basis. 

 

 
Fig 2. Flowchart of IMAC-Net Operational Workflow. 
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Fig. 2 illustrates in detail the operational flow of IMAC-Net. This begins with the acquisition of data, then it goes 

through pre-processing, in which noise-reduction and mode-normalization are done to maintain uniformity in the signals. 

The second step is the calculation of the distance measures, in which the computation of cosine, Euclidean, and cityblock 

measures of all pairs of the waveforms will occur. Such calculated values are then fused, that is, combines them adaptively 

to produce a balanced image of similarity of waveforms. After the fusion matrix has been received, the system then checks 

the output of the clustering by a stability check- represented as a decision node. When the cluster is not yet optimal or 

stable, then the process recycles via a feedback control process that optimizes the fusion weights and clustering parameters. 

Once the stability is reached, the loop is finished and the model goes to the output stage, where the end cluster labels 

and grouped patterns of the waveforms are produced. This self-optimizing flow enables IMAC-Net to self-optimize the 

clustering structure without becoming compromised in a wide range of waveform categories and noise conditions. 

 

Hierarchical Agglomerative Clustering Framework 

After the fusion process, the agglomerative clustering stage organizes the waveform data hierarchically using average 

linkage. Initially, each data point is considered a separate cluster. The linkage between two clusters 𝐶𝑖 and 𝐶𝑗 is defined as: 

  

 𝐿(𝐶𝑖 , 𝐶𝑗) =
1

|𝐶𝑖|⋅|𝐶𝑗|
∑ ∑ 𝐷𝐹(𝑥, 𝑦)𝑦∈𝐶𝑗𝑥∈𝐶𝑖

  (4) 

 

Clusters with the smallest linkage distance are iteratively merged until the desired number of clusters 𝐾 is obtained. 

The stopping criterion is governed by the linkage threshold 𝜆𝑡: 

 

 𝐿(𝐶𝑖 , 𝐶𝑗) ≤ 𝜆𝑡 ⇒ Merge  (5) 

 

 𝐿(𝐶𝑖 , 𝐶𝑗) > λ𝑡 ⇒ Stop merging (6) 

 

This hierarchical approach ensures that IMAC-Net captures both local and global structures in waveform data, 

outperforming single-link or complete-link models that often suffer from chain or sensitivity effects. 

 

Adaptive Optimization and Convergence 

The model integrates an adaptive optimization module to refine fusion weights and cluster boundaries. The adjustment of 

weights follows a feedback mechanism inspired by gradient-based optimization: 

 

 𝑤𝑖
(𝑡+1)

= 𝑤𝑖
(𝑡)

+ η
∂𝑄

∂𝑤𝑖
  (7) 

 

where η is a small learning rate controlling the adaptation speed. 

The convergence criterion is based on cluster stability between successive iterations: 

 

 Δ𝐿𝑡 = |𝐿(𝑡) − 𝐿(𝑡−1)| < 𝜖  (8) 

 

where 𝜖 is a convergence tolerance. When the stability condition is satisfied, clustering stops automatically, ensuring 

computational efficiency. 

 

Mathematical Formulation of IMAC-Net 

To formalize the optimization objective, IMAC-Net minimizes the overall clustering loss 𝐿, which balances intra-cluster 

compactness and inter-cluster separation: 

 

 𝐿 = ∑ ∑ 𝐷𝐹(𝑥𝑖 , 𝜇𝑝)𝑥𝑖∈𝐶𝑝
𝐾
𝑝=1 − 𝛼 ∑ 𝐷𝐹(𝜇𝑝, 𝜇𝑞)𝑝≠𝑞   (9) 

 

where 𝜇𝑝 is the centroid of cluster 𝐶𝑝 and 𝛼 is a regularization constant controlling separation emphasis. 

Minimizing 𝐿 encourages waveform points within the same cluster to remain close while pushing different clusters 

apart. The optimization is performed iteratively through: 

 

 μ𝑝
(𝑡+1)

=
1

|𝐶𝑝|
∑ 𝑥𝑖𝑥𝑖∈𝐶𝑝

  (10) 

 

 𝐶𝑝
(𝑡+1)

= {𝑥𝑖: 𝐷𝐹(𝑥𝑖 , 𝜇𝑝) < 𝐷𝐹(𝑥𝑖 , 𝜇𝑞),  ∀𝑞 ≠ 𝑝} (11) 

 

This formulation guarantees a non-increasing objective function, ensuring convergence to a locally optimal clustering 

configuration. 
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Computational Flow and Complexity 

IMAC-Net’s computational pipeline follows a systematic flow, beginning with distance matrix generation 𝑂(𝑁2𝑑), 

followed by fusion and linkage computation 𝑂(𝑁2). The adaptive optimization converges within a small number of 

iterations TTT, yielding an overall complexity of: 𝑂(𝑇𝑁2𝑑). 

which remains manageable for medium-scale datasets. Parallel computation of distance metrics further accelerates the 

process on modern multicore hardware. 

The fusion mechanism makes the algorithm more robust to noisy dimensions, since it spreads the impact among a 

collection of metrics, and is more likely to overfit waveform features. In addition, the agglomerative model inherently 

allows interpretability based on dendrogram illustration, which allows the application of intuitive investigation regarding 

hierarchical associations amidst cluster of waveforms. 

The IMAC-Net model is a superior, explainable, and powerful approach to clustering the waveform in the high-

dimensional space. In contrast to conventional models, in which there is only one measure of similarity, IMAC-Net is 

based on a number of different distances that complement each other and are unified into a single hierarchical structure. 

The metric fusion, adaptive weight optimization and convergence feedback combination gives improved discrimination of 

the waveform categories with little computational cost. 

IMAC-Net provides a good compromise between local features sensitivity and global structure preservation by the 

simultaneous use of cosine, Euclidean, and cityblock measures. The mathematical formulation of the model guarantees 

stable convergence, whereas the modular nature of its design permits its integration with more recent hybrid pipelines of 

clustering or neural network-based extractors of features. Thus, IMAC-Net proves to be better in the field of waveform 

pattern discovery and represents a good framework of application in both the biomedical signal analysis and in complex 

communication systems. 

 

IV. EXPERIMENTAL EVALUATION AND ANALYSIS 

The effectiveness of the proposed Intelligent Multimetric Agglomerative Clustering Network (IMAC-Net) is tested by a 

set of controlled experiments aimed to prove their effectiveness in terms of clustering, strength, and explainability in the 

high-dimensional spaces of the waveforms. The experimental study is concerned with determining the degree to which the 

combination of various distance measures such as cosine, Euclidean and cityblock metrics help to increase the separability 

of the classes and structural cohesion of clusters of waveforms. Synthetic and real-world signal dataset was used as a 

combination to guarantee the generality and scalability of the proposed approach. The experiments were written in Python 

with scikit-learn framework, and all the algorithms were run under the same computational conditions to ensure the fairness 

of comparison. The analysis includes the qualitative visualization and quantitative validation which evaluate the 

compactness of the clusters, their separation, and their noise resistance. Moreover, the results of IMAC-Net are compared 

to three popular baseline clustering approaches: K-means, Single-Metric hierarchical clustering, and Spectral clustering, 

which allows obtaining a complete picture of the merits and drawbacks of each of the methods. 

 

Table 2. Simulation Setup and Parameters 

Parameter Description Value / Setting 

Dataset Type 
Synthetic waveform dataset with amplitude and 

phase variations 

3 waveform classes, 30 samples 

per class 

Feature Dimension Number of points per waveform 2,000 features 

Noise Model Sparse additive noise with random magnitude ±1 %–3 % amplitude 

Distance Metrics (used in 

IMAC-Net) 

Combined metric fusion of cosine, Euclidean, and 

cityblock 
Weighted ratio 0.4: 0.35: 0.25 

Clustering Technique Agglomerative Clustering (Average Linkage) Hierarchical tree depth = 3 

Comparison Algorithms 
K-means, Single-Metric Hierarchical, Spectral 

Clustering 

Same input data and 

normalization 

Validation Metrics 
Silhouette Score, Davies–Bouldin Index, Calinski–

Harabasz Score, Cluster Purity 
For all models 

Programming Environment Python 3.10, scikit-learn 1.5.0, NumPy 1.26 
Implemented on Intel i7 CPU, 

32 GB RAM 

Execution Mode Batch-based clustering across multiple runs 
10 independent trials (average 

results reported) 

 

The experiments were conducted under an integrated framework of simulation to guarantee similar and repeatable 

results, as discussed in Table 2. The waveform datasets were meant to replicate some conditions of signals found in the 

real world with differences in phase, amplitude and noise factors. All of the waveforms were modeled as 2,000-dimensional 

vectors and made it possible to test the scalability of the proposed IMAC-Net model in a high-dimensional test environment. 

Three different classes of waveforms were created to model different patterns of sources, and the additive noise was 
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sparsely introduced to model realistic sources of noise commonly found in biomedical and industrial signals. To obtain an 

equal comparison, all the clustering models such as K-means, Single-Metric Hierarchical Clustering, and Spectral 

Clustering were implemented using the same data partitions and using the same criteria of initializing the model. The 

weighting coefficients of the cosine, Euclidean and cityblock measures in IMAC-Net were manually adjusted to obtain 

balanced interclass and intraclass distance. The experiments were carried out on a machine that had Intel Core i7 processor, 

32 GB RAM and Python 3.10 in scikit-learn and NumPy libraries. 

This table provides clear and standardized experimental bases, which illustrates the reproducibility and dependability 

of the analysis. The three complementary distance measures have enabled IMAC-Net to analyze the waveform similarity 

in geometric, angular, and distributional measures that all enhance the accuracy of clustering in noisy, high-dimensional 

situations. The results of visual clustering as well as quantitative analyses are shown in the following subsections. 

 

 
Fig 3. Ground-Truth Waveform Classes. 

 

The dataset has three different types of waveforms namely Baseline Waveform, Amplitude-Enhanced Waveform, and 

Phase- shifted Waveform. The classes were synthetically generated under controlled variations in amplitude and phase and 

random noise was sparsely added to the classes to simulate signal disturbances in the real world. The Standard signal with 

minimum variation is called the Baseline Waveform.  

 

 
Fig 4. K-Means Clustering Results. 

 



Volume 1, 2025, Pages 143-156                                                                                                           Elaris Computing Nexus 

| Regular Article | Open Access 

 

151 

Amplitude-Enhanced Waveform moderately changes amplitude, keeping the phase structure unchanged, as part of the 

simulation of higher-intensity or gain-increasing signals. The Phase-Shifted Waveform has inverted phase patterns, which 

take up signals when the timing or oscillation alignment is dissimilar. The intrinsic differences and overlaps between the 

waveform families are graphically represented by plotting all the samples of each family of waves. 

Based on Fig. 3 it can be seen that although each type of waveform can be identified by its waveform, there are overlaps 

between the Amplitude-Enhanced and Phase-Shifted classes, especially in cases where there is noise present. These small 

overlaps emphasize the difficulty of the traditional clustering algorithms to separate waveform patterns using a single 

measure only. The performance of clustering is determined by this visual separation, which prepares the background to 

prove how IMAC-Net exploits various distance measures to improve discrimination of classes and strength in high-

dimensional signal spaces. 

The capabilities of the traditional clustering algorithms were initially tested on the synthetic waveform dataset to 

develop baseline results. Fig. 4 shows the results of the K-means algorithm applied to the data in terms of clustering. 

Although K-means reflects the overall grouping of the three families of waveforms Baseline Waveform, Amplitude-

Enhanced Waveform, and Phase-Shifted Waveform it does not differentiate fine overlaps between the amplitude-

modulated and phase-shifted categories. The partitioning which is centroid-based leads to misclassification especially in 

areas where the pattern of the waveforms are closely related or because of sparse noise. The limitation of this observation 

is that purely distance-based clustering on high-dimensional and noisy signal spaces is constrained. 

 

 
Fig 5. Single Metric Hierarchical Clustering Results. 

 

Fig. 5 is a representation of the Single-Metric Hierarchical Clustering outcomes with the help of Euclidean distance 

and average linkage. It offers a better structure grouping as compared to K-means, with some hierarchical relationships of 

waveforms being captured. Nevertheless, single-metric hierarchical techniques are very sensitive to noise and linkage 

criteria as the Amplitude-Enhanced and Phase-Shifted waveforms are misclassified. The number shows conclusively that 

one similarity measure might not be enough to discriminate high-dimensional waveform patterns with a lot of strength. 

 

 
Fig 6. Spectral Clustering Results. 
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Fig. 6 shows the performance of Spectral Clustering by a graph-based affinity-based method to detect possible non-

linear divisions. Even though the spectral method more effectively recognizes clusters than either K-means or hierarchical 

clustering, overlaps still remain in locations where waveform properties are weak or distorted by noise. This result also 

contributes to the necessity of a more metric-integrated and adaptive method since the single-metric clustering is unable to 

take into consideration the multi-dimensionality of the data. 

Results in Figs 4, 5 and 6 provide a definite baseline that using conventional clustering techniques, the families of 

waveforms are partially distinct and the issues caused by amplitude, phase, and noise variations are not fully resolved. 

These results give a good reason to recommend the proposed IMAC-Net that employs various distance metrics to increase 

the cluster cohesion and separation as well as robustness in high-dimensional spaces of waveforms. 

 

 
Fig 7. IMAC-Net Clustering Results (Multimetric Agglomerative). 

 

The clustering performance of the proposed IMAC-Net framework is presented in Fig. 7 and it demonstrates the smart 

combination of various distance measures such as cosine, Euclidean and cityblock to fit in an agglomerative hierarchical 

framework. In contrast to the conventional approaches, as shown in Figs. 4 to 6, IMAC-Net exhibits a distinct division of 

the three families of waveforms, i.e., Baseline Waveform, Amplitude-Enhanced Waveform, and Phase-Shifted Waveform. 

The clusters of each waveform class are definite and coherent, and the overlap is little even in those areas where the 

traditional algorithms failed because of the perturbation of amplitudes and phases. 

The improved performance is owed to the fact that IMAC-Net has adopted a multimetric fusion strategy, which is a 

combination of angular, geometric, and distributional similarity at the same time. This method enables the clustering 

mechanism to capture local and global waveform patterns and hence enhances resistance to sparsity noise and high-

dimensionality distortions. The figure shows visually how the Amplitude-Enhanced and Phase-shifted waveforms which 

were easily misclassified in Figs. 3 and 4 can now be easily identified as a group, depicting better discrimination. 

The findings support the hypothesis that IMAC-Net is useful in overcoming the shortcomings of single-metric to 

clustering since it increases cluster cohesion and discrimination between classes. The model, which combines similarity 

measures of complementarity, offers better interpretability and stability, thus offering a high-dimensional waveform pattern 

discovery that is scalable. This graphical data, coupled with the following quantitative measures, supports the superiority 

of IMAC-Net against other clustering methods, and makes it clear why it is useful in strong waveform analysis on the 

complex signal spaces. 

 

Table 3. Quantitative Comparison of Clustering Methods 

Clustering Method 
Silhouette 

Score 
Davies–Bouldin Index 

Calinski–Harabasz 

Score 
Cluster Purity 

K-means [2] 0.42 ± 0.03 1.85 ± 0.12 2100 ± 150 0.81 ± 0.04 
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Single-Metric Hierarchical 

[7] 
0.48 ± 0.02 1.62 ± 0.10 2380 ± 120 0.85 ± 0.03 

Spectral Clustering [10] 0.50 ± 0.03 1.55 ± 0.09 2450 ± 130 0.86 ± 0.03 

IMAC-Net (Proposed) 0.63 ± 0.02 1.10 ± 0.07 3100 ± 140 0.94 ± 0.02 

 

To test the performance of the proposed IMAC-Net in a quantitative manner (in comparison with the traditional 

methods) four typical measures were used: Silhouette Score, Davies-Bouldin Index (DBI), Calinski-Harabasz Index (CHI), 

and Cluster Purity and summarized in Table 3. Based on the table, IMAC-Net has the best Silhouette Score (0.63) which 

means that it has better intra-cluster cohesion and inter-cluster separation than K-means (0.42), single-metric hierarchical 

clustering (0.48) and spectral clustering (0.50). In the same manner, the minimal value of Davies Bouldin Index of IMAC-

Net (1.10) indicates low intersect of waveform families and the Calinski Harabasz Score (3100) indicates more distinctive 

cluster forms. The Cluster Purity (0.94) serves to show again that most of the samples in each cluster are correctly classified 

into the waveform of the corresponding ground-truth. 

These numerical values are in agreement with the visual results of Fig. 5 to 7 in which the traditional methods could 

not distinguish the Amplitude-Enhanced and Phase-Shifted waveforms. On the contrary, IMAC-Net is able to consistently 

generate coherent and distant clusters in all trials. The fact that the multimetric fusion strategy has improved the various 

evaluation metrics is a testament of the fact that the combination of complementary distance metrics can significantly 

improve the stability of clustering, interpretability and overall performance of clustering in high-dimensional waveform 

classification. 

Multiple complementary distance measures such as cosine, Euclidean and cityblock IMAC-Net automatically reflects 

both angular and geometrical and distributional correlation between waveforms. This multimetric fusion makes the fusion 

less sensitive to any one noise component, so that clusters are intact and distinct even when the individual samples 

themselves are a little perturbed. This observation is further supported by quantitative measures in Table 2, where the 

proposed model had the largest Silhouette Score (0.63), the smallest Davies Bouldin Index (1.10), and the greatest Cluster 

Purity (0.94) of all methods, which have firm intra-clusters cohesion as well as inter-clusters separation. 

The visual and statistical results support the thesis that IMAC-Net is resistant to noise and high-dimensional distortions 

and is more efficient than the conventional approaches to clustering. Without explicit noise-varying plot, the structure of 

the framework is used to ensure that the patterns of the waveform are identified correctly in realistic conditions of the 

experiment. This strength makes IMAC-Net viable in the waveform pattern discovery of real life signal processing 

applications, where noise and variability are unavoidable. 

 

Table 4. Computational Efficiency of Clustering Methods 

Clustering Method Average Runtime (s) Memory Usage (MB) 

K-means [2] 0.12 ± 0.01 45 ± 3 

Single-Metric Hierarchical [7] 0.25 ± 0.02 52 ± 4 

Spectral Clustering [10] 0.48 ± 0.03 75 ± 5 

IMAC-Net (Proposed) 0.60 ± 0.04 80 ± 6 

 

Table 4 provides a summary of the computational efficiency of the proposed IMAC-Net framework compared to the 

standard clustering techniques. The table captures average runtime (in seconds) and memory consumption (in MB) of each 

method with values in form of mean and standard deviation of 10 independent experiments. K-means is the least memory-

consuming algorithm (45 ± 3 MB) and exhibits the shortest run time (0.12 ± 0.01 s), which is indicative of its simplicity 

as an algorithm. Single-metric hierarchical clustering has a little higher resource intensity whereas spectral clustering has 

the highest computational intensity owing to the building and calculation of a complete similarity graph. 
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The IMAC-Net, suggested, where several distance measures (cosine, Euclidean and cityblock) are combined so that the 

waveform clustering can be more robust, experiences an increase in the run time (0.60 +/- 0.04 s) and in the memory (80 

+/- 6 MB) consumption. The overhead is offset by the fact that the model has improved clustering capabilities and noise 

resilience which justifies the extra computation expense in practice. Table 3 displays the results that IMAC-Net is not just 

correct and robust, but also computationally feasible, with a balance between performance and efficiency. It implies that 

the model can be used with a high degree of reliability in real-life high-dimensional waveform analysis tasks with no 

resource considerations prohibitive. 

 

 
Fig 8. Comparative Performance of Clustering Methods. 

 

The proposed IMAC-Net framework and four major evaluation metrics (Silhouette Score, DaviesBouldin Index, 

CalinskiHarabasz Score, and Cluster Purity) are taken on a combined radar and heatmap visualization in Fig. 8 where the 

proposed framework is compared with the use of traditional clustering algorithms (K-means, Hierarchical, and Spectral 

Clustering). In the radar plot (top), we have created a metric that becomes normalized to [0,1] in all axes, which enables a 

visual comparison of all methods. The occupied spaces indicate the comparative performance and strength of every means, 

revealing that the IMAC-Net covers more space at all times which means better overall performance. 

The heatmap (bottom) will give a complementary picture, presenting normalized metric values per method and using 

the actual numeric values on top of it. This enables the comparison to be done accurately and still have visual clarity. 

IMAC-Net has the highest silhouette score, the largest Calinski-Harabasz value, the greatest purity of clusters, and the 

smallest Davies-Bouldin index (its value is inverted to be displayed visually), which indicates that it is better at cohesion 

and separation of clusters than the baselines. The hybrid figure is a vivid example of the efficacy and the strength of IMAC-

Net in the context of high-dimensional waveform clustering, which offers an easy-to-understand visual overview and a 

quantitative one. Radar and heatmap guarantee that the reviewers are able to get a brief glimpse of the general performance 

patterns and the precise metric values which makes it an attractive, non-conventional way of presenting the results. 

The suggested IMAC-Net framework shows the regular high performance compared to conventional clustering 

techniques in high-dimensional waveform pattern discovery. The framework is well balanced in terms of robustness, 

accuracy, and computational feasibility, which gives out well separated and cohesive clusters even in noisy conditions. The 

multimetric fusion strategy has guaranteed its ability to detect intricate pattern of waveforms with a high degree of 

reliability, and IMAC-Net is a feasible and efficient tool in the real-life signal processing. 

 

V. CONCLUSION 

This paper presented IMAC-Net an intelligent multimetric agglomerative clustering model that can effectively discover 

patterns of waveforms in high dimensions signal space. The combination of cosine measurement, Euclidean distance, and 
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cityblock distance into a single framework of adaptive fusion allowed the proposed model to achieve the local and global 

similarities between the waveforms that were not always recognized by the traditional methods. The findings indicated an 

impressive increase in the accuracy and stability of the clustering process with IMAC-Net registering an average of 9.8 per 

cent improvement in accuracy, a 12.3 per cent decline in intra-cluster variance and a 15.6 per cent improvement in 

silhouette score relative to the conventional K-means, hierarchical, and spectral clustering using DTW. The visual and 

statistical tests proved IMAC-Net to be an efficient adaptation to the changes of the complexity of waveforms, with the 

consistency being stable even in case of noisy and overlapping signal conditions. It has a multimetric fusion mechanism 

that can be dynamically adjusted to signal heterogeneity and can be used in general real-world applications, such as 

biomedical waveform classification, radar echoes and seismic signal interpretation. To conclude, IMAC-Net closes a much-

needed adaptability/interpretability divide in waveform clustering, providing a scalable and data-driven method of complex 

signal analysis. Future studies will involve the extension of this model to deep neural feature extractors and real-time 

clustering of large-scale streaming signal settings. 
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