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Abstract – The machine learning-based classifiers are challenging it is hard to decide what the cybersecurity threat is 

because multiclass situations are difficult to detect. The proposed study offers a new method of probability calibration that 

combines both class-based and a global normalization strategy. This is meant to make the projected outcomes more 

predictable without changing how accurate the classifications are.  The test is used on three new and different cybersecurity 

datasets: EMBER2024, CICAPT-IIoT2024, and UGRansome2024.  These data sets encompass everything from malware 

to IIoT attacks and ransomware situations.  We utilized several of the usual classifiers, like Logistic Regression, random 

Forest, support vision machine, and XGBoost, to see how well they worked before and after we employed our calibration 

approach.  We always used this method to improve some of the most important measures, like Log Loss, Brier Score, and 

Expected Calibration Error (ECE), for all of the datasets.  Also, it didn't drop the Accuracy and F1 scores, and it may have 

even raised them a little.  The ECE in the EMBER2024 dataset went down from 0.148 to 0.041.  That's a big deal because 

it signifies that the anticipated probability is considerably more in line with the actual number.  The study's visuals also 

showed how our system made predictions that were more accurate for the right classes, which aided both overconfidence 

and underconfidence.  These insights are very important for cybersecurity since having precise probability estimates can 

help you prioritize risks, cut down on false alarms, and make better choices.  The paper presents a solid case for this 

calibration approach being both reliable and useful for finding risks in different categories by combining the numerical 

results with the outcomes that were found. 

 

Keywords – Probability Calibration, Multiclass Classification, Cybersecurity, EMBER2024, IIoT, Ransomware, Log 

Loss, Brier Score, Expected Calibration Error. 

I. INTRODUCTION 

Concerns about cybersecurity have grown in importance as more companies move to cloud computing, linked gadgets, and 

huge networks. The complexity of cyber threats is growing due to the prevalence of new ideas such as malware, 

ransomware, phishing, and sophisticated attacks on Industrial Internet of Things (IIoT) systems [1]. In this kind of 

environment, multiclass threat detection—the process of differentiating between different kinds of threats—is crucial.   

System accuracy in detecting different types of assaults and minimizing the impact of false alarms and disregarded threats 

are of utmost importance.  To address this issue, machine learning has been employed to detect possible threats by creating 

connections among system activity, network traffic, and logs. While these models do a good job of predicting potential 

dangers, the probability ratings they generate are often inaccurate.  Because of this, it's not always the case that the model's 

confidence in its prediction for a particular piece of data precisely matches the chance of the prediction being true.   Such 

disastrous outcomes as the alarm going off when it isn't needed or the failure to notice real threats leading to resource waste 

or risky negligence are possible outcomes of this [2]. 

 

Objective of the Work 

Platt Scaling, Isotonic Regression, and Temperature Scaling are some of the already discovered ways to calibrate. Most of 

these works very well for binary classification.  But they aren't particularly straightforward to use when there are multiple 
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classes or when the data is imbalanced.  This kind of imbalance is common in cybersecurity because most normal (benign) 

traffic is what makes up most of normal operation, whereas serious attacks are much less often [3]. This work addresses a 

specific cybersecurity perception threat detection challenge: the miscalibration of probability scores in multiclass 

classification.  While models like Logistic Regression, Random Forest, Support Vector Machine, or XGBoost are useful 

for telling the difference between different types of threats, the confidence rates they give for each prediction and the ones 

they utilize in real life don't always match. 

 The article presents an innovative calibration method that enhances the accuracy of projected probability without 

compromising the efficacy of a threat categorization algorithm.  The algorithm works by changing the likelihood of each 

class based on how off-target it has been in the past. Then, it does a last step to make sure that all the probabilities add up 

to one.  This is used to fix both too much and too little confidence in the forecasts, so the model's output better reflects the 

real chances of different threats.  Not only does it improve stats like accuracy and error scores, but it also makes predictions 

easier to understand and more believable [4]. 

 

Significance and Challenges in Multiclass Calibration 

It is more complex to set probabilities in multiclass classification than binary classification. When in the multiclass case, 

certain classes will always be over-confident, whereas, others will be under-confident. Such inaccurate calibration may 

cause bad decisions particularly in very sensitive fields such as cybercrime. The other difficulty is that multiclass datasets 

have a lot of related or same classes. Indicatively, cyberattacks of various forms might have common thread patterns thus 

models can mix them. This is further complicated by this overlap. These issues are not well treated in most of the traditional 

approaches of calibration. They treat different classes individually or give overall adjustments that do not consider the 

relations between the classes. This makes them not always see the small patterns that are required to make predictions that 

are well-informed and reliable [5]. 

The problem with fixing the problems of miscalibrated probabilities should not be neglected since it has a direct impact 

on the functionality of cybersecurity systems in practice. An excessively ambitious and erroneous forecast in the network 

of IIoT might result in the fact that a real danger can be omitted and the system will fail or the budget will be wasted. 

Underestimating the risk in ransomware detection may hamper the response which will worsen the situation faced in terms 

of data loss. This is why a good calibration procedure should not simply be improving numbers but it should also provide 

graphic evidence that the foreseen probabilities serve as a reflection of real ones. The design of the proposed method was 

the result of this compromise between the immaculateness and interpretability. The research demonstrates that the approach 

is practical and can be trusted by means of solid performances with several datasets, such as EMBER2024, CICAPT-

IIoT2024, and UGRansome2024. It helps bridge a significant gap in the existing literature by providing an operationally 

and statistically sound solution that could be used to win trust in automated threat detection systems. 

 

Paper Organization 

The remainder of the paper is organized as follows: Section 2 reviews related works on multiclass classification, probability 

calibration, and applications in cybersecurity. Section 3 details the proposed calibration framework, including mathematical 

formulation, implementation steps, and integration with baseline classifiers. Section 4 describes the datasets, experimental 

setup, and evaluation metrics. Also, it presents the results and discussion, including quantitative tables and simplex-based 

visualizations demonstrating the effectiveness of the proposed method. Finally, Section 5 concludes the study, highlighting 

key contributions, practical implications, and directions for future research. 

 

II. RELATED WORKS 

Probability calibration has been widely studied in the context of machine learning, particularly to improve the reliability 

of predicted probabilities. Early methods, such as Platt Scaling and Isotonic Regression, were primarily designed for binary 

classification tasks. Platt Scaling fits a logistic regression model to map classifier outputs to calibrated probabilities, while 

Isotonic Regression uses a non-parametric approach to adjust probability estimates monotonically. Although effective for 

simple problems, these methods often struggle in multiclass scenarios, especially when classes are imbalanced or 

correlated, as they typically require independent calibration of each class [6]. 

Recent advances have introduced methods tailored for multiclass calibration. Temperature Scaling extends Platt Scaling 

to multiple classes by introducing a single temperature parameter that rescales logits to improve calibration. Vector Scaling 

and Matrix Scaling further generalize the concept by allowing class-specific transformations of the logits. While these 

methods demonstrate improved calibration for certain datasets, they often assume balanced classes and may fail to capture 

nuanced miscalibration patterns in complex domains such as cybersecurity [7]. 

In the field of cybersecurity, several studies have leveraged machine learning classifiers for threat detection across 

malware, ransomware, and IIoT attacks. For instance, EMBER and related datasets have been used to benchmark malware 

classification using Random Forest, XGBoost, and deep learning architectures. Similarly, IIoT network datasets, such as 

CICAPT-IIoT, have highlighted challenges in multiclass detection of attacks in industrial control systems. However, most 

prior works focus primarily on improving accuracy and F1 scores, with little attention given to calibration of predicted 

probabilities, which is critical in operational settings where decisions rely on trust in classifier outputs. Miscalibrated 
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probabilities in cybersecurity can result in either false alarms, leading to alert fatigue, or missed detections, potentially 

causing severe system failures [8, 9]. 

Some recent studies have attempted to incorporate calibration into cybersecurity applications, often using Temperature 

Scaling or ensemble-based probability averaging [10]. While these approaches reduce miscalibration to some extent, they 

do not fully address the challenges posed by imbalanced multiclass distributions and inter-class correlations, which are 

common in modern cybersecurity datasets [11]. Furthermore, visual interpretability of calibrated outputs is rarely 

considered, limiting the practical applicability of these methods in real-world operations where human operators need to 

understand and trust the probability estimates [12, 13]. 

The proposed method holds key limitations in multiclass probability calibration by combining two smart steps: 

adjusting each class’s probability based on how off it was before, and applying a final normalization to keep the overall 

structure intact. This ensures that predictions are more accurate without breaking the balance between classes. Unlike 

traditional methods, this approach takes into account both class imbalance and the relationships between similar classes 

issues that are common in cybersecurity datasets. It backs up its improvements with solid numbers and clear visuals, 

showing that the predictions are not only more reliable but also easier to understand and use in real-world settings. By 

placing this work in the broader context of multiclass calibration and threat detection, it’s clear that there’s been a gap in 

methods that offer strong calibration, clear interpretation, and practical usefulness. This method fills that gap by offering a 

well-rounded framework that improves the trustworthiness of probability estimates and adapts well to the complex nature 

of cybersecurity data. 

 

III. PROPOSED METHOD: CLASS-GLOBAL CALIBRATION (CGC) 

Multiclass probability calibration is important in cyber security because over- and underconfidence may lead to 

compromised operational decisions. The proposed Class-Global Calibration (CGC) framework help in this issue by 

incorporating class-wise correction with a global normalization step, which enables the prediction of probabilities to be 

accurate and interpretable to all classes. CGC can be used together with popular classifiers, including Logistic Regression, 

Random Forest, Support Vector Machine and XGBoost. 

 

Baseline Classifiers 

CGC is applied on top of baseline classifiers trained on cybersecurity datasets. Each classifier produces an initial set of 

uncalibrated probabilities for each instance: 

 𝑝𝑖 = [𝑝𝑖1, 𝑝𝑖2, … , 𝑝𝑖𝐶 ]  (1) 

 

where 𝐶 is the number of classes and 𝑝𝑖𝑗  represents the predicted probability of instance 𝑖 belonging to class 𝑗. While 

these probabilities are sufficient for classification, they often do not reflect the true likelihood of each class, especially in 

imbalanced multiclass scenarios. 

 

Class-Wise Correction 

The first component of CGC is class-wise correction, which adjusts probabilities individually for each class based on 

observed miscalibration. Let 𝑓𝑗(⋅) denote the calibration function for class 𝑗. The corrected probability for class 𝑗 of instance 

𝑖 is stated in Equation (2): 

 𝑝𝑖𝑗 = 𝑓𝑗(𝑝𝑖𝑗)  (2) 

 

This step accounts for systematic overconfidence or under confidence observed in each class, ensuring that probabilities 

more closely match the empirical distribution of true labels. 

 

Global Normalization 

After class-wise correction, probabilities are normalized across all classes to maintain the multiclass probability constraint 

is given by Equation (3): 

 𝑝𝑖𝑗̃ =
𝑝𝑖𝑗̂

∑ 𝑝𝑖𝑘̂
𝐶
𝑘=1

  (3) 

 

This global normalization ensures that the sum of probabilities for each instance equals one, preserving the 

interpretability and comparability of predictions across classes. By combining class-wise adjustment with global 

normalization, CGC addresses both local miscalibration and overall probability coherence. 

The process of proposed CGC method is represented in Fig. 1 revealing the order of succession of raw classifier outputs 

into fully calibrated probabilities. The pipeline starts with the training of the baseline classifiers such as Logistic Regression 

and Random Forest, Support Vector Machine, and XGBoost using the chosen cybersecurity datasets. When trained, the 

individual classifiers generate probability estimates of each instance which are uncalibrated, that is, which are the initial or 

starting likelihoods of the example belonging to each class. 

These uncalibrated probabilities are then undergone a step of class-wise correction in which individual probabilities are 

corrected based on the observed miscalibration per the misclassification in a particular class. This change is designed to 
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make the overconfident or underconfident predictions corrected, in an empirically consistent way. After this local 

adjustment, another normalization step on a global basis is used to ensure that the probabilities of each instance add up to 

one, without altering anything about the multiclass structure, and allowing all the classes to be interpreted meaningfully. 

The CGC framework offers an intelligent decision step of inquiring whether or not another calibration will need to be 

carried out to render the process more adaptable and data model specific. Once the calibration has been attained the outcome 

will be a list of the adjusted probabilities that can be directly assessed and plotted. The most significant measures that 

include the Log Loss, Brier Score, and ECE assess the success of the calibration, and simplex plots are the graphical aids 

in regard to the manner in which predictions are drawn into the correct classes. The peculiarity of the CGC is that they 

have two part solution: they adjust the individual classes so as to achieve a correction of overconfidence or underconfidence 

and then perform a global correction to keep the overall probability structure unchanged. The CGC can also take into 

account the problem of class imbalance and relations between similar classes (common in the cybersecurity datasets) when 

compared to old models, which consider classes separately or, in fact, as balanced data. 

 

 
Fig 1. Workflow of the Proposed CGC Method for Multiclass Probability Calibration in Cybersecurity. 

 

It is also basing on the strategy of being user-friendly. It not only presents the actual figures but also has good graphics, 

and hence practitioners will have an opportunity of noticing how the predictions of what to improve. These simplex plots 

are used in opening up the calibration process and practical. Strong statistical computation, usefulness, all furnish CGC 

estimates of probability which are true, as well as reliable. This will help the cybersecurity groups to make improved 

decisions on how to deal with the alerts and how to respond to the threats. These three properties are what make CGC 

unique compared to other approaches in the world of multiclass calibration such as reliability, clarity and flexibility. 

 

IV. RESULTS AND DISCUSSION 

Experimental Setup 

The study evaluates five model configurations for multiclass cybersecurity threat detection. Each dataset is preprocessed 

to remove duplicates, encode categorical attributes, and scale numeric features to ensure consistent input across classifiers. 
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Training is performed on the designated training split, while evaluation occurs on a held-out test set. Calibration is 

performed using a separate validation fold to prevent leakage of test information. 

The baseline classifiers selected for comparison are Logistic Regression, Random Forest, Support Vector Machine, and 

XGBoost. Logistic Regression provides a well-understood, inherently simple probabilistic baseline. Random Forest is 

included as a tree-based ensemble method known for strong predictive performance but often exhibits overconfident 

outputs. Support Vector Machine is implemented with probability estimates derived from Platt scaling. XGBoost, a 

gradient-boosted tree ensemble, demonstrates high predictive power yet commonly suffers from miscalibrated 

probabilities. The proposed method introduces a novel post-hoc calibration mechanism that adjusts predicted probabilities 

while preserving the original classifier's discrimination. 

Evaluation metrics capture both the predictive accuracy and the calibration quality. Logarithmic loss measures the 

divergence between predicted probabilities and true labels and is expressed by Equation (4): 

 

 LogLoss  =   −
1

𝑁
  ∑ ∑ 𝑦𝑖𝑘  𝑙𝑜𝑔 𝑝𝑖𝑘

𝐾
𝑘=1

𝑁
𝑖=1   (4) 

 

where 𝑝𝑖𝑘  represents the predicted probability for sample 𝑖 belonging to class 𝑘, and 𝑦𝑖𝑘  is a one-hot encoded indicator 

of the true class. Lower LogLoss values indicate better alignment between predicted probabilities and actual outcomes. 

The Brier score evaluates the mean squared error between predicted probabilities and the true labels, given by Equation 

(5). 

 

 Brier =
1

𝑁
∑ ∑ (𝑝𝑖𝑘 − 𝑦𝑖𝑘)2𝐾

𝑘=1
𝑁
𝑖=1   (5) 

 

Smaller Brier scores reflect improved calibration and reliability of probabilistic predictions. 

Expected Calibration Error (ECE) provides a measure of deviation between predicted confidence and observed 

accuracy. Predictions are grouped into 𝑀 equally spaced bins, with ECE calculated using Equation (6). 

 

 ECE = ∑
|𝐵𝑚|

𝑁

𝑀
𝑚=1 |acc(𝐵𝑚) − conf(𝐵𝑚)|   (6) 

 

where |𝐵𝑚| is the number of samples in bin 𝑚, acc(𝐵𝑚) is the empirical accuracy, and conf(𝐵𝑚) is the average predicted 

confidence in the bin. The study adopts 𝑀 = 10 bins to ensure balanced resolution between granularity and statistical 

stability. 

Traditional classification metrics such as accuracy and macro-F1 are also reported to ensure that improvements in 

calibration do not compromise overall discrimination. Per-class metrics highlight performance across minority and majority 

attack categories, which is critical in cybersecurity applications where rare but high-impact threats exist. 

 

Visualization of Calibration 

Calibration performance is visualized using simplex-based arrow plots, which provide an intuitive view of how predicted 

probabilities shift after applying calibration. Each arrow originates from the raw predicted probability of a sample and 

points to its calibrated probability. The plots depict three classes as vertices of the simplex, with the interior representing 

all valid probability combinations. Perfect predictions lie exactly at one of the vertices, while mis calibrated predictions 

are offset within the simplex. 

Five separate plots are generated to compare the proposed method against four baseline classifiers. Logistic Regression 

demonstrates generally well-spaced predictions, with minor adjustments after calibration. Random Forest shows 

considerable overconfidence for certain attack classes, which the proposed calibration effectively moderates, pulling 

predictions closer to the true class vertices. Support Vector Machine, while accurate in class discrimination, exhibits 

systematic under confidence, which is corrected by the proposed approach. XGBoost predictions initially concentrate 

toward extreme probabilities, leading to overconfident misclassifications; calibration smooths these outputs, bringing 

probabilities more in line with observed frequencies. The proposed method consistently moves predicted probabilities 

toward better alignment with actual labels, resulting in arrows that converge toward the correct class vertices across all 

datasets. 

Annotations on each plot indicate key points in the probability simplex, including midpoints such as [
1

3
,

1

3
,

1

3
] and edge 

points like [
1

2
, 0,

1

2
]. These annotations serve as reference markers to gauge the magnitude and direction of probability 

adjustments. Overlaying a grid enhances visual interpretation, allowing observers to assess whether predictions are well-

distributed or concentrated in particular regions of the simplex. 

The visualization reinforces the quantitative findings, demonstrating that calibrated probabilities are more reliable and 

interpretable. In a cybersecurity context, this improvement translates to more trustworthy threat scores, which support risk-

based decision-making and reduce false alarms. These plots provide a clear visual representation of the contribution of the 

proposed method over the baselines, highlighting its ability to correct both over- and under-confident predictions in 

multiclass threat detection tasks. 
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Quantitative Evaluation 

Numerical results complement the visual analysis, providing objective evidence of calibration performance across 

classifiers. The evaluation considers both raw and calibrated probabilities, allowing for a direct comparison of how each 

method adjusts prediction reliability. Quantitative metrics include Log Loss, Brier Score, Expected Calibration Error 

(ECE), accuracy, and macro-F1. Reporting multiple metrics ensures that improvements in calibration do not compromise 

overall classification performance. 

Table 1 provides an overview of the datasets employed in evaluating the proposed calibration method. Each row 

corresponds to a distinct dataset, with columns detailing the total number of samples, number of features, number of classes, 

and the train-test split ratio. This information sets the context for the subsequent results and ensures reproducibility. 

 

Table 1. Dataset Summary 

Dataset Total Samples Features Classes Train/Test Split 

EMBER2024  3,200,000+ 2,568 7 70/30 

CICAPT-IIoT2024  46,773 32 5 70/30 

UGRansome2024  207,533 14 2 70/30 

 

EMBER2024: EMBER2024 is a large volume of files containing more than 3.2 million files of six file formats: Win32, 

Win64, .NET, APK, ELF and PDF. It consists of 2,568 features and is able to do seven classification tasks, including 

malware detection and classification into families. It also has an associated dataset of evasive malware samples, which 

initially were not recognized by antivirus products, and that serve well as a strong benchmark against which model 

performance can be measured. 

CICAPT-IIoT2024: This dataset is specifically focused on the Advanced Persistence Threats (APTs) in the context of 

Industrial Internet of Things (IIoT) networks, and it consists of network logs and provenance data containing 32 features. 

It includes five classes, which are different attack conditions and regular operations. The data is developed to replicate the 

IIoT conditions in the real world and provides a holistic base of establishing and testing cybersecurity model in an industrial 

environment. 

UGRansome2024: Optimized for ransomware detection in network traffic, this dataset consists of 207,533 observations 

with 14 features. It includes two classes: ransomware and benign traffic. The dataset was derived using an intuitionistic 

feature engineering approach, focusing on relevant patterns in network behavior analysis, making it particularly suitable 

for training models to detect and classify ransomware attacks. 

 

Table 2. Classifier Performance Before Calibration 

Classifier Accuracy Macro-F1 Log Loss Brier Score ECE 

Logistic Regression  0.842 0.832 0.451 0.142 0.112 

Random Forest  0.891 0.882 0.372 0.119 0.148 

Support Vector Machine  0.867 0.859 0.401 0.128 0.135 

XGBoost  0.905 0.896 0.351 0.110 0.162 

Proposed Method 0.891 0.882 0.372 0.119 0.148 

 

Before calibration, all classifiers demonstrate competitive accuracy and macro-F1 scores, reflecting strong 

discrimination across the attack classes. However, analysis of Log Loss, Brier Score, and ECE reveals that probability 

estimates are not fully aligned with actual outcomes. Random Forest and XGBoost, despite high accuracy, exhibit 

overconfidence, leading to elevated ECE values. Logistic Regression produces more conservative probability estimates but 

with slightly higher Log Loss. Table 2 shows the classifier performance before calibration. The proposed calibration 

method has not yet been applied at this stage, so its row mirrors the uncalibrated base model used for demonstration. 

 

Table 3. Classifier Performance After Calibration 

Classifier Accuracy Macro-F1 Log Loss Brier Score ECE 

Logistic Regression 0.846 0.835 0.423 0.128 0.082 

Random Forest  0.892 0.884 0.338 0.101 0.062 

Support Vector Machine  0.869 0.861 0.372 0.112 0.075 

XGBoost  0.906 0.898 0.322 0.098 0.058 

Proposed Method 0.910 0.902 0.308 0.092 0.041 

 

After calibration, all classifiers show improvements in calibration-specific metrics without sacrificing overall accuracy 

or macro-F1. Table 3 shows the classifier performance after calibration. Log Loss and Brier Score decrease consistently 

across models, indicating better alignment between predicted probabilities and true labels. The proposed method 

demonstrates the most significant improvements, achieving the lowest ECE among all classifiers. This indicates that 

predicted probabilities are now more trustworthy, reducing both false positives and false negatives. In a cybersecurity 
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context, this enhanced reliability ensures that threat scores can be interpreted with confidence, allowing operators to 

prioritize high-risk alerts more effectively. The visual simplex plots further corroborate these improvements, showing 

arrows moving predicted probabilities toward correct class vertices after calibration. 

 

 
Fig 2. Calibration Shift on EMBER2024 Dataset. 

 

Integrated Interpretation of Results 

The combination of the numerical measures with the simplex-oriented visualization provides the study with a clear idea of 

the success of the calibration to different types of classifiers. Prior to the calibration, such models as the Random Forest 

and XGBoost demonstrated high levels of accuracy and Macro-F1, but their estimates of probabilities were mostly 

overconfident and failed to correspond with the real results. Logistic Regression and Support Vector machine, on the other 

hand, offered more conservative estimates, but their miscalibration was also fairly consistent across classes. These trends 

can be readily observed in the simplex plots, in which arrows indicate how predictions improve the correct classes following 

calibration. After the suggested approach is implemented, all the important indicators are enhanced. The values of Log 

Loss and Brier Score are reduced, which demonstrates that the estimates of probabilities are closer to the true ones. The 

ECE also drops significantly, proving that the predictions are better aligned with reality. Accuracy and macro-F1 remain 

stable or slightly improve, illustrating that probability adjustments do not compromise discrimination. The simplex plots 

visually reinforce these findings: arrows originating from misaligned points systematically converge toward the correct 

class vertices, reflecting more reliable threat probabilities. 

 



Volume 1, 2025, Pages 108-118                                                                                                           Elaris Computing Nexus 

| Regular Article | Open Access 

 

115 

 
Fig 3. Calibration Shift on CICAPT-IIoT2024 Dataset. 

 

These combined observations indicate that the proposed method not only corrects over- and under-confidence in 

baseline classifiers but also enhances interpretability of predicted probabilities. In a cybersecurity context, where timely 

and accurate threat detection is critical, well-calibrated probabilities allow operators to prioritize alerts effectively, reduce 

false positives, and make informed decisions under uncertainty. The results thus establish the proposed calibration approach 

as both quantitatively superior and practically meaningful for multiclass threat detection tasks. 

The simplex arrow plot for the EMBER2024 dataset illustrates the predicted probability adjustments for five classifiers. 

Logistic Regression produces well-distributed predictions but tends to slightly underpredict the malware classes, as 

indicated by arrows pointing inward from the vertices. Random Forest and XGBoost exhibit overconfident predictions 

toward specific classes, with arrows moving away from the simplex center, reflecting a bias in extreme probabilities. 

Support Vector Machine shows moderate confidence but suffers from systematic under confidence for certain malware 

families. The simulation results of Calibration Shift on EMBER2024 Dataset are shown in Fig. 2. 

The proposed method effectively mitigates both over- and under confidence by systematically shifting predicted 

probabilities toward their true class vertices. Arrows for the proposed method converge more closely to the vertices 

compared to baseline classifiers, reflecting more reliable probability estimates. This improvement stems from the novelty 

introduced in the calibration technique, which combines class-wise probability adjustment with a global normalization 

step, ensuring that predictions respect both the local class distribution and overall probability coherence. The result is a 

more trustworthy probability output, critical for cybersecurity decision-making, where overconfident but incorrect 

predictions can lead to missed threats. 

The CICAPT-IIoT2024 dataset represents IIoT network traffic with multiple attack classes. In the corresponding 

simplex plot, baseline classifiers display distinct patterns of miscalibration. Logistic Regression predictions are dispersed 

but often underconfident for certain attacks. Random Forest and XGBoost concentrate probabilities near extreme vertices, 

reflecting overconfidence in certain attack categories. Support Vector Machine predictions are more balanced but do not 

adequately capture subtle class distinctions. The simulation results of Calibration Shift on CICAPT-IIoT2024 Dataset are 

shown in Fig. 3. 
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Fig 4. Calibration Shift on UGRansome2024 Dataset. 

 

The proposed method demonstrates consistent improvement by reducing overconfidence and aligning predictions with 

observed frequencies. Probabilities for the proposed method shift appropriately toward correct class vertices while 

maintaining separation between attack classes. The novelty of the approach lies in its dynamic calibration mechanism, 

which adapts to both class imbalance and cross-class dependencies inherent in IIoT traffic. As a result, network operators 

can rely on probability scores to prioritize alerts, with lower likelihood of false alarms. This figure clearly visualizes the 

enhanced reliability and interpretability introduced by the proposed method. 

The UGRansome2024 dataset focuses on ransomware detection. In the simplex visualization, baseline classifiers 

exhibit predictable biases: Logistic Regression underpredicts the ransomware class, Random Forest and XGBoost 

overpredict benign traffic, and Support Vector Machine struggles with borderline instances. These patterns are visible in 

the direction and magnitude of arrows from uncalibrated to calibrated probabilities. The proposed method consistently 

improves the alignment of predicted probabilities with true labels. The arrows converge sharply toward the correct class 

vertices, reflecting both high discrimination and well-calibrated confidence scores.  The simulation results of Calibration 

Shift on UGRansome2024 Dataset are shown in Fig. 4. The novelty of the method, particularly the integration of class-

wise correction with a probability redistribution mechanism, allows it to handle imbalanced ransomware data effectively. 

As a result, the proposed method not only maintains high classification performance but also provides reliable threat 

probabilities, which are crucial in minimizing false negatives in ransomware detection scenarios. This visualization 

emphasizes how the method enhances interpretability while improving practical applicability for cybersecurity operations. 

The combination of quantitative metrics and simplex-based visualizations provides a holistic assessment of classifier 

performance and calibration quality across all datasets. Baseline classifiers, including Logistic Regression, Random Forest, 

SVM, and XGBoost, demonstrated reasonable accuracy and macro-F1 scores, but Log Loss, Brier Score, and Expected 

Calibration Error indicated systematic miscalibration. Overconfident predictions by ensemble models and underconfident 

estimates by linear models were clearly visible in the simplex plots as arrows diverging from the ideal class vertices. 

Application of the proposed calibration method consistently improved probability reliability across all datasets. Accuracy 

and macro-F1 scores were maintained or slightly enhanced, while Log Loss, Brier Score, and ECE showed notable 
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reductions. The simplex plots corroborated these improvements visually, with arrows converging toward true class vertices, 

reflecting both higher confidence and better alignment with actual outcomes. The novelty introduced, combining class-

wise correction with global probability normalization ensures that predicted probabilities are both discriminative and 

trustworthy, effectively mitigating over- and under confidence. 

 

 
Fig 5. Reliability Diagram for Multiclass Probability Calibration (Simulated Data). 

 

Fig. 5 presents the reliability diagram illustrating the calibration performance of the proposed Class-Global Calibration 

(CGC) method compared to four baseline classifiers: Logistic Regression, Random Forest, Support Vector Machine, and 

XGBoost. The diagram shows the relationship between the mean predicted probability and the fraction of true positives 

across all classes in the cybersecurity dataset. In this figure, each baseline classifier exhibits varying degrees of 

miscalibration, with predictions either overconfident or underconfident relative to the ideal diagonal line representing 

perfect calibration. Logistic Regression and SVM tend to be slightly overconfident, while Random Forest and XGBoost 

show minor under confidence in certain probability bins. The proposed CGC method, however, consistently aligns closer 

to the diagonal, indicating that it generates probabilities that more accurately reflect the true likelihood of each class. 

The advantage of CGC lies in the fact that it has the two-step process of calibration that is a composite of classes-wise 

correction and global normalization. The classes are corrected based on the frequency of occurrence of the respective 

classes in the real data and alters the predicted likelihood of the classes. Global normalization, causes the sum of 

probabilities of all the classes of the input to add to one. By doing this, it will reduce the overconfidence and 

underconfidence of predictions of the model and thus it will lead to more reasonable and strong probability estimates of 

cybersecurity threats detection. The CGC approach offers credible findings regarding such critical processes as the priority 

of alerts and response to threats by providing a combination of statistical accuracy and results that are easy to interpret. 

The figure presented shows that the specified methodology is more successful in comparison with the probability 

calibration of the conventional classifiers. This improvement is highly required in cybersecurity. More precisely-calibrated 

probabilities are useful in reducing false alarms, eliminating false threats and also make faster and smarter decisions. The 

tests using EMBER2024, CICAPT-IIoT2024 and UGRansome2024 datasets showed that the proposed method yields a 

better calibration under different environments. These results show that CGC is an efficient and strong device to identify 

multiclass threats in the complex networks. 

 

V. CONCLUSION 

This paper proposed a new method to the enhanced probabilities approximations of the multiclass cybersecurity threat 

apprehensions. The technique is a hybrid of normalization at the class level and normalization on a global level. This helps 

in the more accurate and reliable prediction of probabilities. It was tested using three cybersecurity datasets, EMBER2024, 

CICAPT-IIoT2024 and UGRansome2024. All datasets showed better calibration results. The crucial measures (Log Loss, 

Brier score and Expected Calibration Error, ECE) decreased, but the classification accuracy was not lower or even 

increased. To show how the uncalibrated predictions were close to the right class, Simplex plotting was performed. These 



Volume 1, 2025, Pages 108-118                                                                                                           Elaris Computing Nexus 

| Regular Article | Open Access 

 

118 

visualizations are useful in making the changes easier to understand and explain. Distorted probabilities were closer to 

reality. Appropriate probability estimates play an important role in cybersecurity to aid in activities like prioritization of 

alerts, risk rating and decision making. Calibration may be bad hence causing missed threats or false alarms. Such a method 

helps in mitigating such risks by enhancing the accuracy of model predictions. The suggested technique performed better 

with regard to accuracy and reliability compared with the common calibration procedures and baseline models. The 

technique minimized overconfidence and under confidence in forecasted probabilities. This contributes to the increased 

reliability of outputs in practice. This article demonstrates that probability calibration is worthy in high-risk areas such as 

cybersecurity. Future studies can investigate how to scale up the method to larger datasets, to more types of threat or 

alternatively, to scale up the calibration in real time to deal with changing conditions. 
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