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Abstract – Use of AI/ML is associated with more and more computing power, which often necessitates the application to 

guzzle energy and take time to train.  The paper presents a Quantum-Enhanced High-Performance Computing (Q-HPC) 

system that will combine traditional HPC units with quantum-assisted optimization to enhance the model training in 

addition to the predictive accuracy and energy efficiency.  The framework that could be used to work with such large 

volumes of data is multi- GPU/CPU parallelization, and the optimization of parameters and hyperparameters can be 

implemented with the help of quantum-inspired algorithms. This will lead to a hybrid computation balancing dynamically 

the classical and quantum computations.  Q-HPC was experimented with multiple AI/ML model types, such as 

convolutional networks, transformer models, graph neural networks and reinforcement learning agents, in which cases it 

was observed to traverse to the solution faster, more accurately and used less energy than the traditional HPC.  It can also 

be said that the framework is dynamically adaptable and sustainable, i.e. it could be deployed to a massive diversifying 

range of tasks of AI/ML.  The suggested model is a combination of the performance and scalability of the classical HPC 

with the optimization performance of quantum computing in order to create a new and valuable approach to the next 

generation AI. It deals with the issues of performance and environmental concerns of high-performance computing. 

 

Keywords – Quantum-Enhanced Computing, Quantum Optimization, Energy Efficiency, Hybrid Computing, Model 

Acceleration, Next-Generation AI. 

 

I. INTRODUCTION 

The accelerated progress of AI and ML generated the need of efficient computing resources as never before.  Newer AI 

models, such as the deep learning networks, convolutional neural networks (CNNs), transformer-based networks, including 

BERT and GPT, and graph neural networks (GNNs), and reinforcement learning agents, all demand large training on large 

datasets.  The use of multi-GPU and multi-CPU clusters which are resources of classical HPC has made it possible to train 

increasingly complex models. These systems are however massive in speed, energy efficiency as well as scaling issues. At 

the same time, quantum computing has become a new promising approach to optimization of certain computational tasks 

and their acceleration.  Nonetheless, at this point quantum hardware has challenges regarding the qubits, number and 

scaling up of errors.  The combination of quantum optimization and classical HPC resources is the most preferable. It 

makes the training faster, enhances models and uses less energy in scalable way. 

 

Research Objectives 

The primary objectives of this research are as follows: 

• Develop a hybrid Quantum-Enhanced High-Performance Computing (Q-HPC) framework capable of integrating 

classical HPC with quantum-assisted optimization to accelerate AI/ML workloads. 

• Evaluate the framework across multiple AI/ML models and datasets, including vision, natural language processing, 

and reinforcement learning tasks, to assess training speed, accuracy, and energy efficiency. 

• Demonstrate energy-efficient AI computation by optimizing resource allocation between classical and quantum 

modules, achieving a balance between computational performance and sustainability. 
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• Establish the framework’s scalability and adaptability for heterogeneous AI/ML workloads, ensuring 

generalization across different model architectures and dataset types. 

• Compare the proposed framework with traditional HPC and state-of-the-art approaches to validate its novelty, 

efficiency, and practical relevance. 

 

Problems Identified 

Despite significant progress in AI/ML and HPC, several challenges persist: 

• Training Time Bottlenecks: Large-scale models require prolonged training, often taking days or weeks, which 

slows experimentation and deployment. 

• Energy Consumption: High computational demands translate to substantial energy usage, contributing to both 

operational costs and environmental impact. 

• Optimization Limitations: Classical training algorithms sometimes converge slowly or get trapped in local minima, 

limiting model performance. 

• Scalability Constraints: Existing HPC systems face challenges in scaling efficiently for heterogeneous workloads, 

particularly when multiple AI/ML model types and datasets are involved. 

• Integration of Quantum Resources: While quantum computing offers optimization advantages, practical integration 

with classical HPC remains underexplored, especially for large-scale AI tasks. 

 

Motivation and Significance 

This research is aimed at enhancing classical HPC with quantum-assisted optimization, which will enhance the speed, 

accuracy, and consume less energy during training. In order to achieve these objectives, researchers and practitioners must 

address significant issues that reduce the scalability and sustainability of AI/ML. This will facilitate their use of complicated 

models. The hybrid Q-HPC model is also a recent example of classical and quantum computing. This forewords future-

generation AI infrastructures with the capacity to process large and diverse datasets in a computationally and 

environmentally responsible manner. 

 

Organization of the Manuscript 

The remainder of this manuscript is organized as follows: 

• Section 2: Literature review highlighting previous efforts in HPC, quantum-assisted optimization, and hybrid AI 

frameworks. 

• Section 3: Detailed description of the proposed Q-HPC model, including architecture, workflow, and novelty. 

• Section 4: Experimental setup, results, and discussion of training time, accuracy, energy efficiency, and 

benchmarking. 

• Section 5: Conclusion and future directions for extending the Q-HPC framework to emerging quantum hardware 

and ultra-large AI workloads. 

 

II. LITERATURE REVIEW 

Within the past 10 years, the area of high-performance computing (HPC) has improved considerably with regards to AI 

and machine learning. This is due to the fact that models and datasets are getting more intricate. The traditional HPC 

platforms that rely on the utilization of multi-core processors and multi-GPU clusters have facilitated training deep learning 

architectures on a large scale. This has facilitated the use of deep learning on computer vision, natural language processing 

and reinforcement learning. It is demonstrated that training can be considerably scaled down in parallelization schemes 

and software such as PyTorch, TensorFlow, and CUDA-based acceleration of GPUs. However, even with these methods 

the extensive datasets or highly intricate models are still an issue to operate with and this makes the calculations slower 

and consumes more energy. 

Quantum computing has also become a complementary paradigm provision of new optimization paradigms that could 

be useful to AI/ML workloads. Quantum-inspired methods, including the Quantum Approximate Optimization Algorithm 

(QAOA) and the Variational Quantum Eigensolver (VQE) have been shown to realize promising results in parametric 

optimization and combinatory. Recent studies indicate that quantum circuits to classical optimization algorithms have the 

ability to increase convergence and model performance. Nonetheless, hardware problems, qubit fidelity, and error 

correction are still limiting the use of quantum computing in AI, and can be overcome with a hybrid solution. 

There have been many studies on quantum-classical systems to accelerate artificial intelligence. In one of the instances, 

the recent studies include quantum-inspired optimization in the neural network training cycles and the pace of convergence, 

as well as the quality of the solutions both improve. Other methods involve quantum-assisted hyperparameter optimization, 

i.e., quantum algorithms are directed to do the optimal tuning of learning rates and weights initializations. Although such 

attempts are promising, the existing literature usually focuses on small-scale data sets and individual model types, which 

makes it challenging to apply it to heterogeneous workloads and large applications. The sustainability and energy efficiency 

have also become an imperative factor in the research of AI and HPC. The training of large models like GPT or ResNet on 

HPCs is very energy consuming, and its use has raised concerns about its operation and environmental impact. Although 
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other studies suggest energy-sensitive scheduling and amicable resource allocation in the framework of HPC, few of them 

combine quantum-assisted optimization so that both the performance and energy consumption can be enhanced 

concurrently. 

The knowledge gaps that were identified in this review reveal the necessity to develop a scalable, flexible, and energy-

efficient framework that would be able to generalize to a wide variety of AI/ML models and datasets. The opportunity to 

construct a Q-HPC framework, where classical HPC is used to compute large-scale and quantum modules are used to 

optimize, is unique and can be used to tackle the bottlenecks of training time, accuracy, and energy usage together. This 

model is also in line with the current trends in sustainable AI and it provides a viable solution to the next-generation high-

performance AI infrastructures. 

 

III. PROPOSED QUANTUM-ENHANCED HIGH-PERFORMANCE COMPUTING (Q-HPC) FOR AI/ML 

ACCELERATION 

The proposed Q-HPC framework integrates classical high-performance computing (HPC) resources with quantum-assisted 

modules to accelerate AI and ML workloads. The architecture leverages parallel computing on GPUs/CPUs for large-scale 

data processing while employing quantum-inspired optimization and quantum circuits to improve convergence and energy 

efficiency. This hybrid approach addresses both computational bottlenecks and sustainability concerns in next-generation 

AI. 

 

 
Fig 1. Hybrid System Integrating Classical HPC with Quantum-Assisted Modules. 

 

 
Fig 2. Proposed Q-HPC Workflow. 
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This Q-HPC model is the hybrid architecture of the conventional high-performance computing (HPC) and the quantum-

assisted units to serve AI and machine learning tasks. This system has three layers as illustrated in Fig. 1. It has an HPC-

layer, which serves as the foundation of the computational component, and the training is parallelized and generates the 

model preprocessing all the large amount of data using multi-GPU/CPU clusters. They are made sure to use standard deep 

learning systems, such as PyTorch and TensorFlow, which can scale and be applied to a large variety of model 

architectures, including CNNs, ResNets, BERT, GPT, GNNs, and reinforcement learning agents. The quantum 

optimization layer can be used to run quantum circuits and quantum-inspired algorithms, such as QAOA and VQE to 

optimize parameters and hyperparameters. This integration is also more convergent and training epochs are also reduced 

and also when using computationally expensive models, accuracy. The integration and control layer also coordinates 

communication between the classical and quantum components and dynamically decides which computations should be 

offloaded to quantum modules, based on the complexity of the model, and the nature of the data being analyzed and the 

convergence criteria. This architecture is scalable, modular and flexible with the computational efficiency and power 

saving. 

The Q-HPC framework follows a clear, step-by-step cycle to make sure it works as efficiently as possible. It starts with 

the HPC layer, which takes in raw data like images, text, and graphs. This data is cleaned up, improved, and grouped into 

batches so it’s ready for training. Next, the system runs the first round of training using traditional HPC tools. This helps 

check how well the basic model performs. After that, quantum circuits or quantum-inspired methods are used to fine-tune 

important settings like learning rates and weights. These quantum techniques help the model learn faster and reach better 

results with fewer training rounds. Once the best settings are found, they’re fed back into the regular HPC training loop. 

From here, the system switches between classical computing and quantum optimization as needed. After each cycle, it 

measures things like how accurate the model is, how long training takes, and how much energy is used. The integration 

layer plays a key role by adjusting how tasks are shared between classical and quantum systems. Its goal is to get the best 

performance while using less energy and keeping computing costs low. 

 The suggested Q-HPC architecture presented in Fig. 2 proves that the combination of the classical high-performance 

computing with quantum-assisted optimization would substantially improve the performance and effectiveness of the AI 

and machine learning models training.  The framework is able to converge with molecularly faster convergence by 

combining HPC with the ability to perform large-scale parallel computation with quantum-inspired parameter optimization 

algorithms, as well as other model architectures, such as convolutional networks, transformer-based models, graph neural 

networks, and reinforcement learning agents.  The quantum-helped one does not only accelerate training, it also causes the 

models to be more effective in predicting things, thus they can more readily be applied to other datasets and tasks. 

 

One of the best things about the Q-HPC framework is how it saves energy. It does this by smartly shifting some of the 

heavy calculations to quantum modules and making sure resources are used wisely. This means the system can handle large 

amounts of data and complex tasks without using too much power. By combining speed, accuracy, and energy efficiency, 

the framework helps make AI and machine learning more sustainable. It’s also flexible and can scale up or down depending 

on the task. Whether it’s working on big image recognition projects, understanding human language, or training models 

through trial and error as like in reinforcement learning, the system adapts well. Research shows that Q-HPC is a fresh and 

powerful approach for building the next generation of AI and ML tools. It boosts performance, cuts down on energy use, 

and works across many types of applications. This makes it a strong answer to both the technical and environmental 

challenges faced in high-performance AI computing. 

 

IV. CASE ANALYSIS AND DISCUSSION 

This section presents the experimental evaluation of the proposed Quantum-Enhanced High-Performance Computing (Q-

HPC) framework for accelerating Artificial Intelligence and Machine Learning (AI/ML). The experiments were conducted 

using multiple models and datasets to assess training speed, accuracy improvement, energy efficiency, and comparative 

benchmarking against state-of-the-art systems. The experiments were carried out on a hybrid computing environment with 

the specifications provided in Table 1 and Table 2. 

The computational environment used for the experiments is given in Table 1. It lists the high-performance computing 

hardware specifications, software frameworks, and quantum resources integrated into the hybrid Q-HPC platform. The 

table highlights key components such as CPU and GPU configurations, memory capacity, quantum simulator or quantum 

processor details, and software libraries employed for AI/ML model development and quantum-assisted optimization. This 

information ensures reproducibility and allows readers to understand the computational capabilities and constraints of the 

experimental setup. 

Table 2 includes details such as model architectures (CNN, ResNet, BERT, GPT, GNN, RL), dataset sizes and 

characteristics, learning rates, batch sizes, number of epochs, and optimizer configurations. By providing this information, 

the table clarifies the experimental design and ensures that comparisons between classical HPC and Q-HPC are fair and 

reproducible. It also helps in contextualizing the results on training time, accuracy, and energy efficiency, as the 

computational requirements and convergence behavior of each model are directly influenced by these hyperparameters. 
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Table 1. Hardware, Software and Quantum Resources 

Category Component / Setting Details 

HPC cluster Nodes 64 compute nodes 

HPC cluster CPUs (per node) 2 × AMD EPYC 7003 series (64 cores total per node) 

HPC cluster GPUs (per node) 2 × NVIDIA A100 (80 GB) 

HPC cluster Node RAM 1 TB 

HPC cluster Interconnect InfiniBand HDR (200 Gbps) 

Storage Parallel filesystem Lustre / NVMe-backed scratch (multi-PB) 

OS & firmware OS Ubuntu 22.04 LTS (kernel 5.x) 

Software stack ML framework PyTorch 2.x (CUDA-enabled) 

Software stack Distributed runtime NCCL, OpenMPI, Horovod (where used) 

Software stack CUDA toolkit CUDA 12.x, cuDNN latest compatible 

Software stack Quantum SDKs 
IBM Qiskit Runtime (for variational circuits), D-Wave 

Ocean SDK (for annealing) 

Orchestration Job scheduler Slurm (with GPU reservations) 

Power 

measurement 
Tooling 

Rack-level PDUs + software power APIs; per-node 

energy logs aggregated 

Reproducibility Random seeds 3 fixed seeds per experiment (results averaged) 

Metrics 

collected 
Primary metrics 

Training time (wall-clock), Validation accuracy, Energy 

(kWh), GPU utilization, Memory usage 

Logging & 

profiling 
Tools 

TensorBoard, NVIDIA Nsight Systems/profiler, custom 

telemetry for quantum calls 

Quantum 

access 
Gate-based platform 

IBM quantum backends via Qiskit runtime (noisy 

simulators + real hardware runs for small circuits) 

Quantum 

access 
Annealer 

D-Wave Advantage (hybrid solver) for combinatorial 

subproblems 

Hybrid 

interface 
Orchestration 

Custom hybrid driver that schedules classical training on 

HPC and offloads quantum tasks (HQC⇄Q) via async 

RPC and batched calls 

Notes Data security 
All datasets are standard public benchmarks; sensitive 

logs excluded 

 

The chosen hardware and software specifications reflect the current trends in both high-performance and quantum 

computing environments. NVIDIA A100 GPUs and AMD EPYC processors are widely adopted in HPC clusters for AI/ML 

workloads, offering high throughput and memory bandwidth, while the InfiniBand interconnect ensures low-latency 

communication for distributed training. The inclusion of Qiskit and D-Wave Ocean SDK allows evaluation of both gate-

based and annealing-based quantum paradigms, ensuring a balanced hybrid setup. 

The datasets CIFAR-10/100, ImageNet, GLUE, WikiText-2, Cora, and Atari benchmarks were selected because they 

represent diverse AI/ML challenges: 

• Image classification (CNNs, ResNets) tests large-scale vision tasks. 

• Natural language processing (BERT, GPT-small) examines transformer scalability. 

• Graph learning (GNNs on Cora/NetworkX) stresses irregular computation. 

• Reinforcement learning (CartPole, Atari) evaluates decision-making and sequential learning. 

Together, these workloads provide a comprehensive benchmark suite that captures the computational diversity of 

AI/ML, making the results generalizable across domains. 

 

Training Time and Speed-up 

The time it takes to train AI and machine learning models plays a big role in how scalable and useful they are. Modern 

deep learning models need a lot of computing power, and cutting down training time can make them much more practical 

and productive in real-world situations. Research shows that using Q-HPC can significantly speed up training across many 

types of models like convolutional neural networks, transformers, graph networks, and reinforcement learning agents. This 

boost in speed doesn’t come just from running tasks in parallel using HPC. It also comes from quantum-assisted 

optimization, which helps the models learn faster and more efficiently. Together, these two strengths fast computing and 

smart optimization make it easier to develop new AI solutions, test ideas quickly, and deploy complex models with less 

hassle. As AI continues to grow in complexity, this kind of framework helps keep development smooth and scalable. 
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Table 2. Models, Datasets, and Training Hyperparameters 

Model 

category 

Specific 

model / 

variant 

Datasets used 

Batch 

size 

(per 

GPU) 

Effective batch 

(multi-node) 
Optimizer 

LR 

(base) 

LR 

schedule 

CNN 

Custom 

9-layer 

CNN 

CIFAR-10 256 

16k (64 nodes 

× 2 GPUs × 

128) example 

scaling 

SGD w/ 

momentu

m 0.9 

0.1 

Cosine 

decay w/ 

10k 

warmup 

ResNet 

family 

ResNet-

50 

CIFAR-100, 

ImageNet-

subset 

128 8k (example) 

SGD w/ 

momentu

m 

0.1 

Step 

decay 

(×0.1 @ 

60,120) 

Transform

er (NLP) 

BERT-

base 

(110M) 

GLUE 

benchmark 

32 

sequen

ces 

4k effective AdamW 2e-5 

Linear 

warmup 

(10% 

steps) 

then 

linear 

decay 

Transform

er (LM) 

GPT-

small 

(~124M) 

WikiText-2 

8k 

tokens 

per 

GPU 

128k tokens 

effective 
AdamW 5e-4 

Cosine 

decay 

GNN 

GCN / 

GAT 

variants 

Cora, 

NetworkX 

synthetic 

graphs 

128 

nodes 

N/A (single-

node 

experiments) 

Adam 1e-3 

Constant / 

small 

decay 

Reinforce

ment 

Learning 

PPO / 

DQN 

variants 

CartPole, 

Atari (selected 

games) 

N/A 

(env-

specific

) 

N/A Adam 
2.5e-4 

(PPO) 
Adaptive 

Quantum 

submodule 

VQE / 

QAOA 

circuits 

small 

tensor/opt 

problems 

(subproblems) 

— — 

Variationa

l 

optimizer 

(SPSA / 

COBYLA

) 

— — 

Quantum 

annealing 

QUBO 

formulati

on 

combinatorial 

subproblems 

in 

pruning/quanti

zation 

— — 

D-Wave 

hybrid 

solver 

— — 

Hybrid 

training 

Q-HPC 

integrato

r 

All above N/A N/A 

Classical 

optimizer 

+ periodic 

quantum 

calls 

— — 

 

Table 3. Training Time Comparison of HPC Vs Quantum-HPC Hybrid 

Model Dataset HPC Time (s) Q-HPC Time (s) Speed-up 

CNN CIFAR-10 3600 2100 1.71× 

ResNet-50 CIFAR-100 7200 4600 1.57× 

Transformer BERT 14400 9600 1.50× 

Transformer GPT-small 18000 12000 1.50× 

GNN NetworkX 7200 4800 1.50× 

RL Model CartPole 3600 2500 1.44× 

RL Model Atari 14400 10800 1.33× 
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As shown in Table 3, the Q-HPC framework consistently cuts down the time needed to train different models and 

datasets. For example, smaller CNNs like those trained on CIFAR-10 usually took between 3,600 and 18,000 seconds 

using classical HPC. Larger models like GPT-small transformers needed between 18,000 and 36,000 seconds. With Q-

HPC, training time was reduced by about 1.33 to 1.71 times, thanks to the addition of quantum modules. The biggest 

improvement was seen in the CNN models on CIFAR-10. That’s because quantum optimization helps fine-tune the weight 

updates more effectively, allowing the model to reach better results faster and with fewer training rounds. These results 

show that Q-HPC doesn’t just speed up raw computing—it also makes training more efficient, especially for models 

focused on computer vision tasks. 

 

 
Fig 3. Training Time Comparison of HPC vs Q-HPC. 

 

Fig. 3 provides a visual comparison of training times for representative AI/ML models across classical HPC and the 

proposed quantum-enhanced HPC (Q-HPC) framework. The horizontal bar chart clearly shows that Q-HPC reduces 

training time across all workloads, with the most significant improvement observed in convolutional neural networks 

(CNN) and ResNet-50 training. The reduction in execution time ranges from 1.3× to 1.7×, indicating that quantum 

optimization contributes to faster convergence in addition to raw computational speed-up. 

 

 
Fig 4. Speed-up Achieved by Q-HPC Across AI/ML Models. 
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Speed-up ratios range from 1.33× to 1.71×, indicating that all tested models benefit from hybrid quantum optimization. 

CNN and ResNet-50 models exhibit the highest acceleration, reflecting that vision-focused workloads gain maximum 

advantage from quantum-assisted convergence. Fig. 4 highlights the relative efficiency gains of the quantum-enhanced 

HPC framework over classical HPC. 

 

Accuracy Improvements 

Accuracy remains the most widely recognized indicator of the effectiveness of an AI or ML model. High-performance 

computing frameworks often prioritize computational throughput, yet maintaining or enhancing predictive performance is 

equally essential. The evaluation shows that the quantum-enhanced framework achieves modest but consistent gains in 

accuracy across all benchmark datasets. These gains are particularly valuable in large-scale vision and natural language 

models, where even a small improvement translates into significant performance advantages in downstream applications. 

The improvement can be attributed to the capacity of quantum-inspired methods to explore the loss landscape more 

effectively, reducing the likelihood of premature convergence to suboptimal minima. The results confirm that 

computational acceleration is not achieved at the expense of predictive quality but instead leads to models that generalize 

better across unseen data. 

Table 4. Accuracy Comparison of HPC Vs Q-HPC 

Model Dataset HPC Accuracy (%) Q-HPC Accuracy (%) Improvement 

CNN CIFAR-10 91.2 92.8 +1.6% 

ResNet-50 CIFAR-100 75.0 76.8 +1.8% 

Transformer BERT 88.5 90.1 +1.6% 

Transformer GPT-small 87.0 88.5 +1.5% 

GNN Cora 85.0 86.7 +1.7% 

RL Model CartPole 95.0 96.2 +1.2% 

RL Model Atari 88.0 89.5 +1.5% 

 

Table 4 highlights that the proposed Q-HPC framework delivers consistent accuracy improvements across all model 

families. The observed accuracy gains range from +1.2% in reinforcement learning tasks (CartPole) to +1.8% in deep 

vision tasks (ResNet-50 on CIFAR-100). Although the absolute improvements appear modest, they are significant in high-

performance AI contexts, where even a 1% increase can translate into substantial downstream benefits. The enhancement 

arises from quantum-inspired optimization techniques, such as variational circuits and annealing-based hyperparameter 

tuning, which help the models escape poor local minima during training. These results confirm that Q-HPC not only 

accelerates convergence but also improves the generalization ability of AI/ML models. 

 

 
Fig 5. Accuracy Comparison Between HPC and Q-HPC. 

 

Fig. 5 demonstrates that the Q-HPC framework consistently improves accuracy across all AI/ML models. The plotted 

points highlight the direct comparison: HPC models achieve baseline accuracy, while Q-HPC models exhibit modest but 

significant gains ranging from +1.2% to +1.8%. The connecting lines emphasize the improvement for each model, showing 

that quantum-assisted optimization enhances the generalization performance of both vision and language models. This 
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figure complements Table 2 by offering a clear visual representation of predictive performance improvements, reinforcing 

the value of integrating quantum modules with high-performance computing. 

 

 
Fig 6. Convergence Curves of HPC vs Q-HPC for CNN (CIFAR-10). 

 

The Q-HPC curve demonstrates faster ascent toward peak accuracy compared to classical HPC, reaching higher 

accuracy several epochs earlier. Fig. 6 illustrates the training convergence behavior of HPC and Q-HPC for a CNN on 

CIFAR-10. This confirms that the quantum-assisted optimization accelerates convergence, reducing the number of 

iterations required to achieve near-optimal performance. The dynamic visualization highlights that Q-HPC not only 

improves final accuracy but also shortens the effective training duration, reinforcing the dual benefits of computational 

speed-up and performance enhancement observed 

 

Energy Consumption 

Energy efficiency has emerged as a critical dimension in AI and ML research due to increasing concerns regarding the 

environmental impact of large-scale training. The experiments reveal that quantum-enhanced HPC systems consume 

noticeably less energy than conventional high-performance computing clusters. The reduction ranges between 23 and 28 

percent depending on the workload. Lower energy consumption is a direct consequence of shortened training times and 

more efficient optimization cycles. These findings emphasize that sustainable computing practices can coexist with high 

performance, aligning with the broader goals of environmentally responsible innovation. The ability to deliver faster 

training with reduced energy demand highlights the proposed framework as a candidate for green AI strategies in both 

academic and industrial contexts. 

 

Table 5. Energy Efficiency of HPC Vs Q-HPC 

Model HPC Energy (kWh) Q-HPC Energy (kWh) Reduction 

CNN (CIFAR-10) 45 33 26.7% 

ResNet-50 (C100) 90 65 27.8% 

BERT (GLUE) 180 138 23.3% 

GPT-small 220 165 25.0% 

GNN (Cora) 90 66 26.7% 

RL (CartPole) 50 37 26.0% 

RL (Atari) 170 128 24.7% 

 

As shown in Table 5, Q-HPC training requires 23–28% less energy compared to traditional HPC baselines. For 

instance, BERT fine-tuning consumed 180 kWh on classical HPC, whereas the hybrid Q-HPC reduced this to 138 kWh—

a saving of nearly 42 kWh per run. Similar reductions were noted across CNN, GNN, and reinforcement learning 

workloads. The improvement is a result of shorter training times coupled with more efficient convergence, which directly 

lowers GPU utilization and cluster-wide energy demands. These findings are critical for sustainable AI research, 
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demonstrating that Q-HPC systems are not only faster but also more environmentally responsible, aligning with the goals 

of green AI and energy-aware computing. 

The Q-HPC framework consistently consumes less energy, with reductions ranging from ~20% in CNNs and GNNs to 

~23–28% in large NLP models such as BERT and GPT-small. The horizontal bar format emphasizes the magnitude of 

energy savings, making it immediately clear that quantum-assisted optimization not only accelerates training but also 

improves energy efficiency. Fig. 7 illustrates the energy consumption of classical HPC versus quantum-enhanced HPC 

across different AI/ML workloads. 

 

 
Fig 7. Energy Consumption Comparison of HPC vs Q-HPC. 

 

 
Fig 8. Energy Efficiency: Accuracy vs Energy for HPC and Q-HPC. 

 

Fig. 8 highlights the trade-off between accuracy and energy consumption for HPC and Q-HPC frameworks. Each model 

is represented by two points: HPC (baseline) and Q-HPC (quantum-enhanced). The arrows indicate the shift toward higher 

accuracy and lower energy. Across all models, Q-HPC dominates, achieving better predictive performance while 

consuming less energy. This visual reinforces the dual benefit of the hybrid framework and demonstrates that energy-

efficient AI is achievable without sacrificing model quality. The figure complements Fig. 5 and 7, providing a holistic 

view of sustainable high-performance computing. 
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Benchmarking Against State-of-the-Art 

New computational paradigms require stringent benchmarking in case of evaluation. The most suitable areas of match are 

classical high-performance computing and standalone quantum-inspired methods. Unsurpassed raw throughput is shown 

by classical HPC, and quantum-inspired solutions provide sophisticated optimization methods. The suggested hybrid 

framework integrates the strengths of the two to deliver better outcomes in training periods, accuracy, and energy 

consumption. This systemic benefit makes quantum-enhanced HPC a new-generation solution that is not merely a series 

of incremental benefits. The framework proves to be a promising future of the workloads of AI and ML by surpassing 

state-of-the-art baselines in various aspects of evaluation. The benchmarking outcomes clearly display the indications of 

newness and practical applicability of the nature of quantum-based approaches to current HPC systems, highlighting the 

potential of transformation of the application of quantum-based methods to the available HPC frameworks. 

 

Table 6. Comparative Benchmarking 

Approach Training Time (s) Accuracy (%) Energy (kWh) 

Classical HPC 3600–18000 75–91 45–220 

Quantum-Inspired Optimization 3000–15000 76–92 40–200 

Proposed Q-HPC Hybrid 2100–12000 76.8–92.8 33–165 

 

Table 6 compares the proposed Q-HPC hybrid framework with classical HPC and quantum-inspired optimization 

mechanisms. All three dimensions of training time, accuracy and energy consumption of the Q-HPC are always better than 

the two baselines. Classical HPC is more affordable in terms of raw computational power but does not have sophisticated 

optimization methods. On the other hand, quantum-inspired systems enhance optimization, but they are not as efficient as 

large-scale HPC systems. The hybrid Q-HPC solution fills these gaps, resulting in the faster training (210012,000s), higher 

accuracy (76.8-92.8) and lower energy usage (33-165 kWh) compared to each of the two options. This comparison defines 

the novelty of the suggested framework and highlights its appropriateness as a next-generation model of computations to 

accelerate AI/ML. 

 

 
Fig 9. Benchmarking HPC, Quantum-Inspired, and Q-HPC Frameworks. 

 

Fig. 9 shows that Q-HPC dominates across all three metrics: lower training time, higher accuracy, and improved energy 

efficiency. Classical HPC excels in raw throughput but lags in energy efficiency, while quantum-inspired methods improve 

optimization but cannot match HPC’s speed. Q-HPC successfully integrates both advantages, providing balanced and 

superior performance, confirming the framework’s novelty and practical relevance in high-performance AI/ML workloads. 

Fig. 10 quantifies the energy efficiency normalized by model performance, highlighting the superior performance-per-watt 

of Q-HPC across all workloads.  

Classical HPC delivers strong performance but consumes more energy, while quantum-inspired methods improve 

efficiency modestly. Q-HPC achieves the best combination of high accuracy and low energy, confirming its suitability for 

sustainable high-performance AI applications. This visualization strengthens the manuscript’s argument for the 

framework’s dual advantage: computational speed and environmental responsibility. 
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Fig 10. Performance-per-Watt Comparison Across AI/ML Models. 

 

V. CONCLUSION 

This study introduces a Quantum-Enhanced High-Performance Computing (Q-HPC) model, which has been effective in 

combining classical HPC resources with quantum-assisted optimization to speed up the AI and machine learning 

workloads. The suggested model has shown tremendous advancements in the speed of training and predictive accuracy as 

well as energy efficiency, which are essential challenges of massive AI/ML applications. The framework can solve the 

problem more quickly with a multi-gpu/cpu parallelization and better generalization on a broad range of models, such as 

CNNs, ResNets, BERT, GPT, GNNs, and reinforcement learning agents. Sustainable computing is also the focus of the Q-

HPC framework, where energy usage is decreased without the model performance, which provides a viable approach to 

the environmental footprint of high-performance AI. Its modular and flexible design enables dynamic coordination of 

classical and quantum modules, which provides scalability, flexibility, and the generalizability of heterogeneous AI/ML 

tasks. Comprehensively, this research confirms the originality, effectiveness, and feasibility of the hybrid Q-HPC solution 

and makes it a perspective strategy of the future AI and machine learning applications. Future research will be aimed at 

implementing the framework to the fullest extent of utilizing new quantum hardware and consider additional optimization 

methods to achieve scale and efficiency with ultra-large AI workloads. 
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