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Abstract — Use of AlI/ML is associated with more and more computing power, which often necessitates the application to
guzzle energy and take time to train. The paper presents a Quantum-Enhanced High-Performance Computing (Q-HPC)
system that will combine traditional HPC units with quantum-assisted optimization to enhance the model training in
addition to the predictive accuracy and energy efficiency. The framework that could be used to work with such large
volumes of data is multi- GPU/CPU parallelization, and the optimization of parameters and hyperparameters can be
implemented with the help of quantum-inspired algorithms. This will lead to a hybrid computation balancing dynamically
the classical and quantum computations. Q-HPC was experimented with multiple AlI/ML model types, such as
convolutional networks, transformer models, graph neural networks and reinforcement learning agents, in which cases it
was observed to traverse to the solution faster, more accurately and used less energy than the traditional HPC. It can also
be said that the framework is dynamically adaptable and sustainable, i.e. it could be deployed to a massive diversifying
range of tasks of AI/ML. The suggested model is a combination of the performance and scalability of the classical HPC
with the optimization performance of quantum computing in order to create a new and valuable approach to the next
generation Al. It deals with the issues of performance and environmental concerns of high-performance computing.

Keywords — Quantum-Enhanced Computing, Quantum Optimization, Energy Efficiency, Hybrid Computing, Model
Acceleration, Next-Generation Al.

I.  INTRODUCTION

The accelerated progress of Al and ML generated the need of efficient computing resources as never before. Newer Al
models, such as the deep learning networks, convolutional neural networks (CNNs), transformer-based networks, including
BERT and GPT, and graph neural networks (GNNs), and reinforcement learning agents, all demand large training on large
datasets. The use of multi-GPU and multi-CPU clusters which are resources of classical HPC has made it possible to train
increasingly complex models. These systems are however massive in speed, energy efficiency as well as scaling issues. At
the same time, quantum computing has become a new promising approach to optimization of certain computational tasks
and their acceleration. Nonetheless, at this point quantum hardware has challenges regarding the qubits, number and
scaling up of errors. The combination of quantum optimization and classical HPC resources is the most preferable. It
makes the training faster, enhances models and uses less energy in scalable way.

Research Objectives
The primary objectives of this research are as follows:
e Develop a hybrid Quantum-Enhanced High-Performance Computing (Q-HPC) framework capable of integrating
classical HPC with quantum-assisted optimization to accelerate AI/ML workloads.
e Evaluate the framework across multiple AlI/ML models and datasets, including vision, natural language processing,
and reinforcement learning tasks, to assess training speed, accuracy, and energy efficiency.
e Demonstrate energy-efficient Al computation by optimizing resource allocation between classical and quantum
modules, achieving a balance between computational performance and sustainability.

95



Volume 1, 2025, Pages 95-107 Elaris Computing Nexus
| Regular Article | Open Access

e Establish the framework’s scalability and adaptability for heterogencous AI/ML workloads, ensuring
generalization across different model architectures and dataset types.

e Compare the proposed framework with traditional HPC and state-of-the-art approaches to validate its novelty,
efficiency, and practical relevance.

Problems Identified
Despite significant progress in Al/ML and HPC, several challenges persist:
e Training Time Bottlenecks: Large-scale models require prolonged training, often taking days or weeks, which
slows experimentation and deployment.
e Energy Consumption: High computational demands translate to substantial energy usage, contributing to both
operational costs and environmental impact.
e  Optimization Limitations: Classical training algorithms sometimes converge slowly or get trapped in local minima,
limiting model performance.
o  Scalability Constraints: Existing HPC systems face challenges in scaling efficiently for heterogeneous workloads,
particularly when multiple AI/ML model types and datasets are involved.
o Integration of Quantum Resources: While quantum computing offers optimization advantages, practical integration
with classical HPC remains underexplored, especially for large-scale Al tasks.

Motivation and Significance

This research is aimed at enhancing classical HPC with quantum-assisted optimization, which will enhance the speed,
accuracy, and consume less energy during training. In order to achieve these objectives, researchers and practitioners must
address significant issues that reduce the scalability and sustainability of AI/ML. This will facilitate their use of complicated
models. The hybrid Q-HPC model is also a recent example of classical and quantum computing. This forewords future-
generation Al infrastructures with the capacity to process large and diverse datasets in a computationally and
environmentally responsible manner.

Organization of the Manuscript
The remainder of this manuscript is organized as follows:
e Section 2: Literature review highlighting previous efforts in HPC, quantum-assisted optimization, and hybrid Al
frameworks.
e Section 3: Detailed description of the proposed Q-HPC model, including architecture, workflow, and novelty.
e Section 4: Experimental setup, results, and discussion of training time, accuracy, energy efficiency, and
benchmarking.
e Section 5: Conclusion and future directions for extending the Q-HPC framework to emerging quantum hardware
and ultra-large Al workloads.

Il. LITERATURE REVIEW

Within the past 10 years, the area of high-performance computing (HPC) has improved considerably with regards to Al
and machine learning. This is due to the fact that models and datasets are getting more intricate. The traditional HPC
platforms that rely on the utilization of multi-core processors and multi-GPU clusters have facilitated training deep learning
architectures on a large scale. This has facilitated the use of deep learning on computer vision, natural language processing
and reinforcement learning. It is demonstrated that training can be considerably scaled down in parallelization schemes
and software such as PyTorch, TensorFlow, and CUDA-based acceleration of GPUs. However, even with these methods
the extensive datasets or highly intricate models are still an issue to operate with and this makes the calculations slower
and consumes more energy.

Quantum computing has also become a complementary paradigm provision of new optimization paradigms that could
be useful to Al/ML workloads. Quantum-inspired methods, including the Quantum Approximate Optimization Algorithm
(QAOQA) and the Variational Quantum Eigensolver (VQE) have been shown to realize promising results in parametric
optimization and combinatory. Recent studies indicate that quantum circuits to classical optimization algorithms have the
ability to increase convergence and model performance. Nonetheless, hardware problems, qubit fidelity, and error
correction are still limiting the use of quantum computing in Al, and can be overcome with a hybrid solution.

There have been many studies on quantum-classical systems to accelerate artificial intelligence. In one of the instances,
the recent studies include quantum-inspired optimization in the neural network training cycles and the pace of convergence,
as well as the quality of the solutions both improve. Other methods involve quantum-assisted hyperparameter optimization,
i.e., quantum algorithms are directed to do the optimal tuning of learning rates and weights initializations. Although such
attempts are promising, the existing literature usually focuses on small-scale data sets and individual model types, which
makes it challenging to apply it to heterogeneous workloads and large applications. The sustainability and energy efficiency
have also become an imperative factor in the research of Al and HPC. The training of large models like GPT or ResNet on
HPCs is very energy consuming, and its use has raised concerns about its operation and environmental impact. Although
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other studies suggest energy-sensitive scheduling and amicable resource allocation in the framework of HPC, few of them
combine quantum-assisted optimization so that both the performance and energy consumption can be enhanced
concurrently.

The knowledge gaps that were identified in this review reveal the necessity to develop a scalable, flexible, and energy-
efficient framework that would be able to generalize to a wide variety of Al/ML models and datasets. The opportunity to
construct a Q-HPC framework, where classical HPC is used to compute large-scale and quantum modules are used to
optimize, is unique and can be used to tackle the bottlenecks of training time, accuracy, and energy usage together. This
model is also in line with the current trends in sustainable Al and it provides a viable solution to the next-generation high-
performance Al infrastructures.

I1l. PROPOSED QUANTUM-ENHANCED HIGH-PERFORMANCE COMPUTING (Q-HPC) FOR Al/ML
ACCELERATION
The proposed Q-HPC framework integrates classical high-performance computing (HPC) resources with quantum-assisted
modules to accelerate Al and ML workloads. The architecture leverages parallel computing on GPUs/CPUs for large-scale
data processing while employing quantum-inspired optimization and quantum circuits to improve convergence and energy
efficiency. This hybrid approach addresses both computational bottlenecks and sustainability concerns in next-generation
Al.
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Fig 1. Hybrid System Integrating Classical HPC with Quantum-Assisted Modules.
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Fig 2. Proposed Q-HPC Workflow.
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This Q-HPC model is the hybrid architecture of the conventional high-performance computing (HPC) and the quantum-
assisted units to serve Al and machine learning tasks. This system has three layers as illustrated in Fig. 1. It has an HPC-
layer, which serves as the foundation of the computational component, and the training is parallelized and generates the
model preprocessing all the large amount of data using multi-GPU/CPU clusters. They are made sure to use standard deep
learning systems, such as PyTorch and TensorFlow, which can scale and be applied to a large variety of model
architectures, including CNNs, ResNets, BERT, GPT, GNNSs, and reinforcement learning agents. The quantum
optimization layer can be used to run quantum circuits and quantum-inspired algorithms, such as QAOA and VQE to
optimize parameters and hyperparameters. This integration is also more convergent and training epochs are also reduced
and also when using computationally expensive models, accuracy. The integration and control layer also coordinates
communication between the classical and quantum components and dynamically decides which computations should be
offloaded to quantum modules, based on the complexity of the model, and the nature of the data being analyzed and the
convergence criteria. This architecture is scalable, modular and flexible with the computational efficiency and power
saving.

The Q-HPC framework follows a clear, step-by-step cycle to make sure it works as efficiently as possible. It starts with
the HPC layer, which takes in raw data like images, text, and graphs. This data is cleaned up, improved, and grouped into
batches so it’s ready for training. Next, the system runs the first round of training using traditional HPC tools. This helps
check how well the basic model performs. After that, quantum circuits or quantum-inspired methods are used to fine-tune
important settings like learning rates and weights. These quantum techniques help the model learn faster and reach better
results with fewer training rounds. Once the best settings are found, they’re fed back into the regular HPC training loop.
From here, the system switches between classical computing and quantum optimization as needed. After each cycle, it
measures things like how accurate the model is, how long training takes, and how much energy is used. The integration
layer plays a key role by adjusting how tasks are shared between classical and quantum systems. Its goal is to get the best
performance while using less energy and keeping computing costs low.

The suggested Q-HPC architecture presented in Fig. 2 proves that the combination of the classical high-performance
computing with quantum-assisted optimization would substantially improve the performance and effectiveness of the Al
and machine learning models training. The framework is able to converge with molecularly faster convergence by
combining HPC with the ability to perform large-scale parallel computation with quantum-inspired parameter optimization
algorithms, as well as other model architectures, such as convolutional networks, transformer-based models, graph neural
networks, and reinforcement learning agents. The quantum-helped one does not only accelerate training, it also causes the
models to be more effective in predicting things, thus they can more readily be applied to other datasets and tasks.

One of the best things about the Q-HPC framework is how it saves energy. It does this by smartly shifting some of the
heavy calculations to quantum modules and making sure resources are used wisely. This means the system can handle large
amounts of data and complex tasks without using too much power. By combining speed, accuracy, and energy efficiency,
the framework helps make Al and machine learning more sustainable. It’s also flexible and can scale up or down depending
on the task. Whether it’s working on big image recognition projects, understanding human language, or training models
through trial and error as like in reinforcement learning, the system adapts well. Research shows that Q-HPC is a fresh and
powerful approach for building the next generation of Al and ML tools. It boosts performance, cuts down on energy use,
and works across many types of applications. This makes it a strong answer to both the technical and environmental
challenges faced in high-performance Al computing.

IV. CASE ANALYSIS AND DISCUSSION
This section presents the experimental evaluation of the proposed Quantum-Enhanced High-Performance Computing (Q-
HPC) framework for accelerating Artificial Intelligence and Machine Learning (Al/ML). The experiments were conducted
using multiple models and datasets to assess training speed, accuracy improvement, energy efficiency, and comparative
benchmarking against state-of-the-art systems. The experiments were carried out on a hybrid computing environment with
the specifications provided in Table 1 and Table 2.

The computational environment used for the experiments is given in Table 1. It lists the high-performance computing
hardware specifications, software frameworks, and quantum resources integrated into the hybrid Q-HPC platform. The
table highlights key components such as CPU and GPU configurations, memory capacity, quantum simulator or quantum
processor details, and software libraries employed for AI/ML model development and quantum-assisted optimization. This
information ensures reproducibility and allows readers to understand the computational capabilities and constraints of the
experimental setup.

Table 2 includes details such as model architectures (CNN, ResNet, BERT, GPT, GNN, RL), dataset sizes and
characteristics, learning rates, batch sizes, number of epochs, and optimizer configurations. By providing this information,
the table clarifies the experimental design and ensures that comparisons between classical HPC and Q-HPC are fair and
reproducible. It also helps in contextualizing the results on training time, accuracy, and energy efficiency, as the
computational requirements and convergence behavior of each model are directly influenced by these hyperparameters.
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Table 1. Hardware, Software and Quantum Resources

Category Component / Setting Details
HPC cluster Nodes 64 compute nodes
HPC cluster CPUs (per node) 2 x AMD EPYC 7003 series (64 cores total per node)
HPC cluster GPUs (per node) 2 x NVIDIA A100 (80 GB)
HPC cluster Node RAM 1TB
HPC cluster Interconnect InfiniBand HDR (200 Gbps)
Storage Parallel filesystem Lustre / NVMe-backed scratch (multi-PB)
OS & firmware 0S Ubuntu 22.04 LTS (kernel 5.x)
Software stack ML framework PyTorch 2.x (CUDA-enabled)
Software stack Distributed runtime NCCL, OpenMPI, Horovod (where used)
Software stack CUDA toolkit CUDA 12.x, cuDNN latest compatible
IBM Qiskit Runtime (for variational circuits), D-Wave
Software stack Quantum SDKs Ocean SDK (for annealing)
Orchestration Job scheduler Slurm (with GPU reservations)
Power Tooli Rack-level PDUs + software power APIs; per-node
ooling
measurement energy logs aggregated
Reproducibility Random seeds 3 fixed seeds per experiment (results averaged)
Metrics Primary metrics Training time (wall-clock), Validation accuracy, Energy
collected (kWh), GPU utilization, Memory usage
Logging & Tools TensorBoard, NVIDIA Nsight Systems/profiler, custom

profiling telemetry for quantum calls

Quantum i IBM quantum backends via Qiskit runtime (noisy

access Gate-based platform simulators + real hardware runs for small circuits)
Quantum D-Wave Advantage (hybrid solver) for combinatorial

Annealer

access subproblems

Hvbrid Custom hybrid driver that schedules classical training on
interace Orchestration HPC and offloads quantum tasks (HQC2Q) via async

RPC and batched calls
. All datasets are standard public benchmarks; sensitive
Notes Data security

logs excluded

The chosen hardware and software specifications reflect the current trends in both high-performance and quantum
computing environments. NVIDIA A100 GPUs and AMD EPYC processors are widely adopted in HPC clusters for Al/ML
workloads, offering high throughput and memory bandwidth, while the InfiniBand interconnect ensures low-latency
communication for distributed training. The inclusion of Qiskit and D-Wave Ocean SDK allows evaluation of both gate-
based and annealing-based quantum paradigms, ensuring a balanced hybrid setup.

The datasets CIFAR-10/100, ImageNet, GLUE, WikiText-2, Cora, and Atari benchmarks were selected because they
represent diverse AI/ML challenges:

e Image classification (CNNs, ResNets) tests large-scale vision tasks.

o Natural language processing (BERT, GPT-small) examines transformer scalability.

e  Graph learning (GNNs on Cora/NetworkX) stresses irregular computation.

e Reinforcement learning (CartPole, Atari) evaluates decision-making and sequential learning.

Together, these workloads provide a comprehensive benchmark suite that captures the computational diversity of
AI/ML, making the results generalizable across domains.

Training Time and Speed-up

The time it takes to train Al and machine learning models plays a big role in how scalable and useful they are. Modern
deep learning models need a lot of computing power, and cutting down training time can make them much more practical
and productive in real-world situations. Research shows that using Q-HPC can significantly speed up training across many
types of models like convolutional neural networks, transformers, graph networks, and reinforcement learning agents. This
boost in speed doesn’t come just from running tasks in parallel using HPC. It also comes from quantum-assisted
optimization, which helps the models learn faster and more efficiently. Together, these two strengths fast computing and
smart optimization make it easier to develop new Al solutions, test ideas quickly, and deploy complex models with less
hassle. As Al continues to grow in complexity, this kind of framework helps keep development smooth and scalable.
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Table 2. Models, Datasets, and Training Hyperparameters

Specific Batch
Model P size Effective batch - LR LR
model / Datasets used - Optimizer
category - (per (multi-node) (base) schedule
variant GPU)
16k (64 nodes Cosine
Custom x 2 GPUs x SGD w/ decay w/
CNN 9-layer CIFAR-10 256 128) example momentu 0.1 10k
CNN amp m 0.9
scaling warmup
Step
CIFAR-100, SGD w/
RGSNEt ResNet- ImageNet- 128 8k (example) | momentu 0.1 decay
family 50 subset m (x0.1@
60,120)
Linear
warmup
BERT- 32 (10%
'I;rra?lflf&r)r)n base beﬁ&Lrjnirk sequen 4k effective AdamW 2e-5 steps)
(110M) ces then
linear
decay
GPT- 8k
Transform small WikiText-2 tokens 128k to_kens AdamW Se-d Cosine
er (LM) per effective decay
(~124M) GPU
Cora .
GCN/ . N/A (single- Constant /
GNN GAT NEtWO”fX 128 node Adam le-3 small
. synthetic nodes X
variants experiments) decay
graphs
Reinforce PPO/ CartPole, (l:r/IC- 2 Ee-d
ment DQN Atari (selected e N/A Adam : Adaptive
. ) specific (PPO)
Learning variants games) )
Variationa
small |
Quantum (\?/Sg A tensor/opt - o optimizer o -
submodule circuits problems (SPSA/
(subproblems) COBYLA
)
combinatorial
QUBO subproblems D-Wave
g]‘ﬂg;tl‘ljrr]“ formulati in _ _ hybrid | — _
g on pruning/quanti solver
zation
Classical
. Q-HPC optimizer
HYb.“d integrato All above N/A N/A + periodic — —
training ; quantum
calls

Table 3. Training Time Comparison of HPC Vs Quantum-HPC Hybrid

Model Dataset HPC Time (s) Q-HPC Time (s) Speed-up
CNN CIFAR-10 3600 2100 1.71x
ResNet-50 CIFAR-100 7200 4600 1.57x
Transformer BERT 14400 9600 1.50x
Transformer GPT-small 18000 12000 1.50%
GNN NetworkX 7200 4800 1.50%
RL Model CartPole 3600 2500 1.44x%
RL Model Atari 14400 10800 1.33x%

100



Volume 1, 2025, Pages 95-107 Elaris Computing Nexus
| Regular Article | Open Access

As shown in Table 3, the Q-HPC framework consistently cuts down the time needed to train different models and
datasets. For example, smaller CNNs like those trained on CIFAR-10 usually took between 3,600 and 18,000 seconds
using classical HPC. Larger models like GPT-small transformers needed between 18,000 and 36,000 seconds. With Q-
HPC, training time was reduced by about 1.33 to 1.71 times, thanks to the addition of quantum modules. The biggest
improvement was seen in the CNN models on CIFAR-10. That’s because quantum optimization helps fine-tune the weight
updates more effectively, allowing the model to reach better results faster and with fewer training rounds. These results
show that Q-HPC doesn’t just speed up raw computing—it also makes training more efficient, especially for models
focused on computer vision tasks.

RL (CartPole)
18090

GNN (Cora)

BERT (GLUE)

Models

ResNet-50 (CIFAR-100)

CNN (CIFAR-10)

mE=m HPC
E= Q-HPC

0 2500 5000 7500 10000 12500 15000 17500
Training Time (seconds)

Fig 3. Training Time Comparison of HPC vs Q-HPC.

Fig. 3 provides a visual comparison of training times for representative Al/ML models across classical HPC and the
proposed quantum-enhanced HPC (Q-HPC) framework. The horizontal bar chart clearly shows that Q-HPC reduces
training time across all workloads, with the most significant improvement observed in convolutional neural networks
(CNN) and ResNet-50 training. The reduction in execution time ranges from 1.3x to 1.7x, indicating that quantum
optimization contributes to faster convergence in addition to raw computational speed-up.
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Fig 4. Speed-up Achieved by Q-HPC Across Al/ML Models.
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Speed-up ratios range from 1.33x to 1.71x, indicating that all tested models benefit from hybrid quantum optimization.
CNN and ResNet-50 models exhibit the highest acceleration, reflecting that vision-focused workloads gain maximum
advantage from quantum-assisted convergence. Fig. 4 highlights the relative efficiency gains of the quantum-enhanced
HPC framework over classical HPC.

Accuracy Improvements

Accuracy remains the most widely recognized indicator of the effectiveness of an Al or ML model. High-performance
computing frameworks often prioritize computational throughput, yet maintaining or enhancing predictive performance is
equally essential. The evaluation shows that the quantum-enhanced framework achieves modest but consistent gains in
accuracy across all benchmark datasets. These gains are particularly valuable in large-scale vision and natural language
models, where even a small improvement translates into significant performance advantages in downstream applications.
The improvement can be attributed to the capacity of quantum-inspired methods to explore the loss landscape more
effectively, reducing the likelihood of premature convergence to suboptimal minima. The results confirm that
computational acceleration is not achieved at the expense of predictive quality but instead leads to models that generalize
better across unseen data.

Table 4. Accuracy Comparison of HPC Vs Q-HPC

Model Dataset HPC Accuracy (%) Q-HPC Accuracy (%) Improvement
CNN CIFAR-10 91.2 92.8 +1.6%
ResNet-50 | CIFAR-100 75.0 76.8 +1.8%
Transformer BERT 88.5 90.1 +1.6%
Transformer | GPT-small 87.0 88.5 +1.5%
GNN Cora 85.0 86.7 +1.7%
RL Model CartPole 95.0 96.2 +1.2%
RL Model Atari 88.0 89.5 +1.5%

Table 4 highlights that the proposed Q-HPC framework delivers consistent accuracy improvements across all model
families. The observed accuracy gains range from +1.2% in reinforcement learning tasks (CartPole) to +1.8% in deep
vision tasks (ResNet-50 on CIFAR-100). Although the absolute improvements appear modest, they are significant in high-
performance Al contexts, where even a 1% increase can translate into substantial downstream benefits. The enhancement
arises from quantum-inspired optimization techniques, such as variational circuits and annealing-based hyperparameter
tuning, which help the models escape poor local minima during training. These results confirm that Q-HPC not only
accelerates convergence but also improves the generalization ability of AI/ML models.
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Fig 5. Accuracy Comparison Between HPC and Q-HPC.

Fig. 5 demonstrates that the Q-HPC framework consistently improves accuracy across all AI/ML models. The plotted
points highlight the direct comparison: HPC models achieve baseline accuracy, while Q-HPC models exhibit modest but
significant gains ranging from +1.2% to +1.8%. The connecting lines emphasize the improvement for each model, showing
that quantum-assisted optimization enhances the generalization performance of both vision and language models. This
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figure complements Table 2 by offering a clear visual representation of predictive performance improvements, reinforcing
the value of integrating quantum modules with high-performance computing.

92
-e- HPC
Q-HPC .
91 1 -
7’
’
’;..,__‘ /z
90 ’, ¥
I3

—_ 7
= .
- -
") a /l’
© J o .
C 89 / AN -,
] 4 A
[} +
o i/
< ¥ ]
S ol
=S 8817 .,’
] g7
g = b
c P
> y

87 -

’
o«
.
’
"
86 - ....——0‘___.
85 T T T T T T T T T

T ‘
1 2 3 4 s 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Epochs

Fig 6. Convergence Curves of HPC vs Q-HPC for CNN (CIFAR-10).

The Q-HPC curve demonstrates faster ascent toward peak accuracy compared to classical HPC, reaching higher
accuracy several epochs earlier. Fig. 6 illustrates the training convergence behavior of HPC and Q-HPC for a CNN on
CIFAR-10. This confirms that the quantum-assisted optimization accelerates convergence, reducing the number of
iterations required to achieve near-optimal performance. The dynamic visualization highlights that Q-HPC not only
improves final accuracy but also shortens the effective training duration, reinforcing the dual benefits of computational
speed-up and performance enhancement observed

Energy Consumption

Energy efficiency has emerged as a critical dimension in Al and ML research due to increasing concerns regarding the
environmental impact of large-scale training. The experiments reveal that quantum-enhanced HPC systems consume
noticeably less energy than conventional high-performance computing clusters. The reduction ranges between 23 and 28
percent depending on the workload. Lower energy consumption is a direct consequence of shortened training times and
more efficient optimization cycles. These findings emphasize that sustainable computing practices can coexist with high
performance, aligning with the broader goals of environmentally responsible innovation. The ability to deliver faster
training with reduced energy demand highlights the proposed framework as a candidate for green Al strategies in both
academic and industrial contexts.

Table 5. Energy Efficiency of HPC Vs Q-HPC

Model HPC Energy (KWh) Q-HPC Energy (KWh) Reduction
CNN (CIFAR-10) 45 33 26.7%
ResNet-50 (C100) 90 65 27.8%

BERT (GLUE) 180 138 23.3%
GPT-small 220 165 25.0%
GNN (Cora) 90 66 26.7%
RL (CartPole) 50 37 26.0%
RL (Atari) 170 128 24.7%

As shown in Table 5, Q-HPC training requires 23-28% less energy compared to traditional HPC baselines. For

instance, BERT fine-tuning consumed 180 kWh on classical HPC, whereas the hybrid Q-HPC reduced this to 138 kWh—
a saving of nearly 42 kwh per run. Similar reductions were noted across CNN, GNN, and reinforcement learning
workloads. The improvement is a result of shorter training times coupled with more efficient convergence, which directly
lowers GPU utilization and cluster-wide energy demands. These findings are critical for sustainable Al research,
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demonstrating that Q-HPC systems are not only faster but also more environmentally responsible, aligning with the goals
of green Al and energy-aware computing.

The Q-HPC framework consistently consumes less energy, with reductions ranging from ~20% in CNNs and GNNs to
~23-28% in large NLP models such as BERT and GPT-small. The horizontal bar format emphasizes the magnitude of
energy savings, making it immediately clear that quantum-assisted optimization not only accelerates training but also
improves energy efficiency. Fig. 7 illustrates the energy consumption of classical HPC versus quantum-enhanced HPC
across different AI/ML workloads.
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Fig 7. Energy Consumption Comparison of HPC vs Q-HPC.
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Fig. 8 highlights the trade-off between accuracy and energy consumption for HPC and Q-HPC frameworks. Each model
is represented by two points: HPC (baseline) and Q-HPC (quantum-enhanced). The arrows indicate the shift toward higher
accuracy and lower energy. Across all models, Q-HPC dominates, achieving better predictive performance while
consuming less energy. This visual reinforces the dual benefit of the hybrid framework and demonstrates that energy-
efficient Al is achievable without sacrificing model quality. The figure complements Fig. 5 and 7, providing a holistic
view of sustainable high-performance computing.
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Benchmarking Against State-of-the-Art

New computational paradigms require stringent benchmarking in case of evaluation. The most suitable areas of match are
classical high-performance computing and standalone quantum-inspired methods. Unsurpassed raw throughput is shown
by classical HPC, and quantum-inspired solutions provide sophisticated optimization methods. The suggested hybrid
framework integrates the strengths of the two to deliver better outcomes in training periods, accuracy, and energy
consumption. This systemic benefit makes quantum-enhanced HPC a new-generation solution that is not merely a series
of incremental benefits. The framework proves to be a promising future of the workloads of Al and ML by surpassing
state-of-the-art baselines in various aspects of evaluation. The benchmarking outcomes clearly display the indications of
newness and practical applicability of the nature of quantum-based approaches to current HPC systems, highlighting the
potential of transformation of the application of quantum-based methods to the available HPC frameworks.

Table 6. Comparative Benchmarking

Approach Training Time (s) Accuracy (%) Energy (kWh)
Classical HPC 3600-18000 75-91 45-220
Quantum-Inspired Optimization 3000-15000 76-92 40-200
Proposed Q-HPC Hybrid 2100-12000 76.8-92.8 33-165

Table 6 compares the proposed Q-HPC hybrid framework with classical HPC and quantum-inspired optimization
mechanisms. All three dimensions of training time, accuracy and energy consumption of the Q-HPC are always better than
the two baselines. Classical HPC is more affordable in terms of raw computational power but does not have sophisticated
optimization methods. On the other hand, quantum-inspired systems enhance optimization, but they are not as efficient as
large-scale HPC systems. The hybrid Q-HPC solution fills these gaps, resulting in the faster training (210012,000s), higher
accuracy (76.8-92.8) and lower energy usage (33-165 kWh) compared to each of the two options. This comparison defines
the novelty of the suggested framework and highlights its appropriateness as a next-generation model of computations to
accelerate AI/ML.

— HPC
- Quantum-Inspired
Q-HPC

draimping Time

Energy Efficien

Fig 9. Benchmarking HPC, Quantum-Inspired, and Q-HPC Frameworks.

Fig. 9 shows that Q-HPC dominates across all three metrics: lower training time, higher accuracy, and improved energy
efficiency. Classical HPC excels in raw throughput but lags in energy efficiency, while quantum-inspired methods improve
optimization but cannot match HPC’s speed. Q-HPC successfully integrates both advantages, providing balanced and
superior performance, confirming the framework’s novelty and practical relevance in high-performance Al/ML workloads.
Fig. 10 quantifies the energy efficiency normalized by model performance, highlighting the superior performance-per-watt
of Q-HPC across all workloads.

Classical HPC delivers strong performance but consumes more energy, while quantum-inspired methods improve
efficiency modestly. Q-HPC achieves the best combination of high accuracy and low energy, confirming its suitability for
sustainable high-performance Al applications. This visualization strengthens the manuscript’s argument for the
framework’s dual advantage: computational speed and environmental responsibility.
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Fig 10. Performance-per-Watt Comparison Across Al/ML Models.

V. CONCLUSION

This study introduces a Quantum-Enhanced High-Performance Computing (Q-HPC) model, which has been effective in
combining classical HPC resources with quantum-assisted optimization to speed up the Al and machine learning
workloads. The suggested model has shown tremendous advancements in the speed of training and predictive accuracy as
well as energy efficiency, which are essential challenges of massive Al/ML applications. The framework can solve the
problem more quickly with a multi-gpu/cpu parallelization and better generalization on a broad range of models, such as
CNNs, ResNets, BERT, GPT, GNNs, and reinforcement learning agents. Sustainable computing is also the focus of the Q-
HPC framework, where energy usage is decreased without the model performance, which provides a viable approach to
the environmental footprint of high-performance Al. Its modular and flexible design enables dynamic coordination of
classical and quantum modules, which provides scalability, flexibility, and the generalizability of heterogeneous Al/ML
tasks. Comprehensively, this research confirms the originality, effectiveness, and feasibility of the hybrid Q-HPC solution
and makes it a perspective strategy of the future Al and machine learning applications. Future research will be aimed at
implementing the framework to the fullest extent of utilizing new quantum hardware and consider additional optimization
methods to achieve scale and efficiency with ultra-large Al workloads.
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