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Abstract – This study analyzes the efficacy of three data processing architectures: fog computing, cloud computing, and a 

hybrid fog-cloud computing framework within an Internet of Things (IoT) context. We evaluate the performance of 

machine learning methods regarding computation time, communication overhead, precision, and efficiency on IoT-based 

sensor data. The proposed hardware utilizes a Raspberry Pi as a fog node for local data processing and a cloud infrastructure 

for executing computationally intensive operations. Each architecture processes both raw and processed real-world IoT 

sensor data. The transformation procedure at the fog node compresses data, reducing its size and minimizing overhead 

during transmission to the cloud. The findings demonstrate that the hybrid architecture offers the best balance of execution 

speed, communication efficiency, and accuracy when compared to cloud-only and fog-only methods. The hybrid system 

leverages cloud computing capabilities and minimizes transmission costs by collecting data locally. 

 

Keywords – IoT, Fog Computing, Cloud Computing, Hybrid Architecture, Machine Learning, Data Aggregation, Network 

Efficiency, Execution Time, Communication Costs, Energy Consumption, Data Transformation. 

 

I. INTRODUCTION 

In the subsequent years of the Internet of Things (IoT), context-awareness facilitates the link between the virtual computer 

entities and physical realm, including data processing, network connectivity, and environmental sensing. Progress allows 

several sophisticated IoT applications, including smart clinical systems, smart energy models, smart transportation models, 

and smart construction. The consolidated architecture of IoT models encompasses intelligent IoT-centric application services 

and the foundational IoT sensor models. The Gartner projection predicts that the worldwide IoT marketplace will reach 5.8 

billion IoT-centric applications by 2020, reflecting a 21% rise from 2019 [1]. The global expansion of the IoT industry is 

driven by wireless networking systems and the advent of innovative technologies, including cloud platforms. This 

development results in a significant surge in demand for interconnected application services and IoT devices. 

 An IoT device is designed to gather environmental data, collaborate with other devices using network technology, and 

be accessible over the Internet. Consequently, measurements including as throughput, latency, and energy consumption have 

gained importance in evaluating the performance of IoT devices due to their constrained hardware capabilities. Cloud 

computing solutions facilitate the processing, collection, and interpretation of data obtained via IoT networks within 

acceptable timeframes. While these two components and their attributes are technical matters that need study, application-

layer protocols for communication and their implementation represent one of the most essential and formidable challenges 

for the IoT. IoT applications favor lightweight communications protocols that accommodate the constrained hardware 

capabilities of the used devices and may function well within these limitations. Numerous IoT application-layer protocols 

for communication have been created to address specific application challenges. 

Previously, IoT devices communicated only via the cloud, where all data was solely stored. Currently, fog and edge 

computing are used with cloud computing to enhance computational performance and address intricate issues. In the future, 
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direct communication among gadgets on the Internet will be feasible. IoT applications aggregate substantial user data and 

store it at several nodes before to and subsequent to processing. Maintaining the security, integrity, and availability of IoT 

data encounters several obstacles [2]. In the complex landscape of the IoT, data security stands as a critical issue at the core 

of this linked domain. The IoT produces an enormous amount of sensitive data, making its protection a formidable challenge. 

A multitude of concerns emerges, including the threat of illegal access, privacy violations, and data manipulation.  

The Internet of Things (IoTs) is revolutionizing businesses via immediate data exchange, although the fast proliferation 

of networked devices poses considerable hurdles to effective resource distribution. The main aims of IoTs include attaining 

superior efficiency, diminishing latency, guaranteeing security, and lowering energy usage. Migabo, Djouani, and Kurien 

[3] examine the necessary strategies aimed at enhancing resourceful management in IoTs. Sophisticated optimization is 

required to be adaptable to the diverse extent of IoT tools with divergent power requirements and capacities in IoT networks. 

The main approaches discussed in a number of works involve heuristic approaches, hybrid approaches, game-theoretic 

approaches, and machine learning approaches. The heuristic algorithms like the ACO (ant colony optimization), PSO 

(particle swarm optimization), GAs (genetic algorithms) can offer convenient to near-optimal solutions and are specifically 

necessary in the dynamic environments of IoT. 

Li et al. [4] introduced their study of a resource allocation scheme optimization in a complex computing environment 

consisting of the IoT, cloud and fog computing. In their study, they aimed at developing an efficient meta-heuristic algorithm 

of resource allocation management and guaranteeing a balance in the load between layers that are connected. The authors 

describe the issues related to the changing demands concerning the worker-load and the capabilities of managing the fog and 

the cloud facilities, since the nature and diversity of the IoT objects change. They introduce a meta-heuristic method, MHHO 

(Modified Harris-Hawks Optimization), that is supposed to dynamically assign resources depending on the workload 

features and availability with the goal of spreading workloads and mitigating the risk of using excessive resources. The 

algorithm aims at maximizing such performance parameters as reaction time, energy consumption and utilization efficiency 

of resources. 

This paper aims to evaluate how efficiently fog, cloud and hybrid approaches of fog-cloud architectures process IoT 

sensor data. The area of concern is efficiency evaluation, the time of execution, cost of communication, and accuracy of the 

machine learning algorithms over the raw and modified data, and to identify the best data processing approach in resource-

constrained environments.  

The remainder of this study has been organized using the following structure: Section II reviews related works on fog 

computing in IoT systems, hybrid fog-cloud architectures for IoT, and data aggregation techniques in IoT networks. Section 

III describes our experimental setup describing hardware configuration, software and tools used, and data transformation 

process. In Section IV, results on fog (Raspberry PI), cloud, and hybrid have been provided; and observations concerning 

data consumption over the network, and accuracy recorded. Lastly, Section V concludes the study and highlights the 

performance of hybrid, cloud, and fog architectures in the processing of IoT sensor data, with major focus on accuracy, 

communication efficiency, and execution time of ML algorithms.  

 

II. RELATED WORK 

Fog Computing in IoT Systems 

As described by Mouradian et al. [5], fog computational is a newly established architecture and paradigm that reallocates 

the computational capacity of a conventional cloud-centric structure from central data centers to localized end-user networks 

and devices. Fog computing primarily diversifies cloud computing infrastructure to the network's edge, enabling a novel 

array of seamless applications and services for end-users. From the inception of IoT-centric applications, the number of 

devices linked to the web has surged to billions, and this trend is expected to continue in the foreseeable future. Conventional 

cloud-centric centralized systems are incapable of responding to all interlinked devices in actual-time without compromising 

client experience. To address issues posed by IoT architecture. 

A study by Angel et al.  [6] on cloud, fog, and edge computing has thoroughly examined the interplay between IoT and 

these computing systems, elucidating how fog and edge computing may connect cloud computing and IoT by relocating 

computation nearer to end-user devices, thus mitigating challenges related to energy consumption, latency, and contextual 

awareness. They examined various aspects of cloud, fog, and edge layers, considered as distinct tiers. In the context of 

device-enhanced MEC, one must account for additional complexities arising from the dynamic characteristics of device-

based resource providers, including decentralized ownership, limited energy, mobility, resource limitations, improved 

proximity to other device-centric resource providers, and D2D (device-to-device) communication capabilities.  

The technological viability of the lowest layer of device-improved MEC, whereby devices like smartphones serve as 

peripheral service suppliers, has been shown in models such as Honeybee, Aura, MClouds, Hyrax, and MMPI. Nevertheless, 

the current studies have not explored the collaboration and work-sharing mechanisms between device-based resource 

providers and nodes at the cloud and fog levels, taking into account diverse overheads, performance consequences, battery 

considerations, and other offloading characteristics. 

A recent study by Fernando et al. [7] on the integration of cloud, fog, and edge has shown that little research has examined 

the interconnections among these three models within a 3-tier cloud-fog-edge architecture. Their study focused on cloud-

based and edge-based smart cities. Furthermore, many works have reviewed fog computing application in smart urban 

environments, of which only one adhered to a certain design. To address the latency and location-aware vehicular use of 



Volume 1, 2025, Pages 22-31                                                                                                            Elaris Computing Nexus 

| Regular Article | Open Access 

24 

 

smart urban environments via fog computing, we decided to examine the current literature to mitigate the delay and latency 

associated with fog computing in the development of urban environments. These papers are predicated on a comprehensive 

investigation of fog computing in urban environments.  

Park and Yoo [8] proposed an agreement-based method for validating the correctness and stability of the vehicular 

information system in a fog computing network to reduce latency and ensure the integrity of the vehicular network system. 

They presented methodologies for resource allocation and offloading decisions inside a fog model. The enhancement issue 

was articulated as a hybrid integer nonlinear optimization problem. A unique three-tier design was developed in [9], 

minimizing each user's task reaction time by offloading tactics utilizing an extended Nash equilibrium grounded in queueing 

theory. In [10], Ali et al. introduced Volunteer Supported FC (VSFC), which reduced intrinsic communication latency, power 

expenditure, and networking use. VSFC lowers the expenses associated with sustaining Real-time IoT computing.  

Singh and Singh [11] provided a comprehensive architecture for IoT-Fog-Cloud applications to enable ultra-fast services, 

rapid feedback times, and real-time queries by Fog task delegation to enhance Quality of Service (QoS). They introduced 

the dynamic optimum task delegation challenge in programmable access networks, which provides low latency and 

adaptable processing. They introduced an offloading strategy for dynamic computing to the network's edge, aimed at 

minimizing offloading costs while mitigating substantial network strain. The theoretical research indicated that this technique 

might minimize offloading costs and limit queue length.  

Wang and Chen [12] presented a technique for delay-optimized offloading decisions and resource assignment in fog-

integrated IoT networks to mitigate the strain on core network communication. They also added a mechanism of unloading 

to balance load of Fog. Their approach reduces latency through the Fog-to-Fog cooperation model that aims to assign 

requests as well as distinguish between IoT-heavy and lightweight requests. A Software-Defined Networking (SDN)-based 

hybrid normal data propagation architecture is used. 

 

Hybrid Fog-Cloud Architectures for IoT 

The hybrid infrastructure leverages the power of the cloud and the centralProcessing system with low latency offered by fog 

nodes. In addition, it fulfills a broad range of applications, including consumer services, to non-discretional industrial 

operations. The ecosystem can efficiently support a vast amount of data produced by IoT devices to allow real-time decision-

making and analytics.  

Khan et al. [13] suggested an EcoTaskSched approach that presents a BiLSTM, DNN-based network. This network is 

an improvement of the unidirectional LSTM. It examines the complex input patterns, such as temporal schemes, in both 

directions in the data of task scheduling. It contributes knowledge on the long-term time-varying dependencies that increase 

energy efficiency, lead to higher levels of accuracy and ensure quality of services in the fog-cloud networks. This novel 

extension approach utilizes the memory-based sequence modeling by accounting for both forward (historical-to-predictive) 

and backwards (predictive-to-historical) data relationships. It more effectively captures long-term relationships, resulting in 

enhanced work scheduling forecasts. 

Chang et al. [14] presented a cloud-fog intrusion detection system (CFIDS) that utilizes cloud and fog resources to detect 

threats in contemporary research. Nonetheless, the assault impacts data packets originating from Fog layer nodes. The bulk 

of invasive cyber-attacks are closely related variations of previously recognized cyber assaults, sharing same data and 

properties. Furthermore, the data packet requires analysis to ascertain the breach. SYN packets, used to establish TCP 

connections, inundate a victim's network in a SYN flood attack. To alleviate the effects of SYN assaults in an FC 

environment, it is essential to execute the requisite security procedures.  

Deep learning-based intrusion detection systems are effective for safeguarding fog computing layers from intrusions and 

resolving existing challenges. The authors of this study propose a novel hybrid architecture for deep learning intrusion 

detection in fog computing, integrating several deep learning models. 

 

Data Aggregation Techniques in IoT Networks 

As described by Tong, Hamzei, and Jafari [15], data aggregation (DA) undermines the efficacy of dispersed raw data from 

various sources inside the network. The aggregation within the network substantially influences the quantity and duration of 

sent packets, thereby minimizing energy usage and extended network longevity. The 3 major scheduling protocols for DA 

encapsulated in [16]: Quad basic consolidation requires that each router regularly gather all data objects and compile them 

after a certain interval. (ii) Periodic dispersion aggregation functions similarly to a basic periodic approach, except it 

transmits data immediately upon receiving information from all its subordinate nodes. (iii) Ultimately, in a regulated 

accumulation at intervals, every node inside the aggregate tree alters 1 hour of time according to its location and transmits 

the resultant conclusion. 

In [17], the primary objective for using data aggregation techniques in LLNs (low-power and lossy networks) and the 

IoT is to reduce energy consumption and extend network longevity. Provided that every networking node has limited 

capability for data generation, processing, and storage, while simultaneously facilitating data interchange with neighboring 

nodes, the need for optimal resource usage within the network is self-evident. To achieve this objective, many data 

aggregation approaches are suggested to eliminate duplication from superfluous and irrelevant data, hence reducing 

transmission costs as well. Fig. 1 shows the method and infrastructure of data compilations in IoT and LLN systems. 
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Fig 1. Data Aggregation Structure. 

 

The research conducted by Surenther, Sridhar, and Roberts [18] highlighted the application of ML for data consolidation 

and clustering in WSNs (wireless sensor networks) to minimize energy usages by decreasing data transmission volume. 

Numerous machines learning approaches, including neural networks, reinforcement learning, and swarm intelligence, have 

been employed. The efficacy of these approaches for network longevity, data precision, coverage, and energy use were 

examined, revealing that Q-learning and decision trees exhibited minimal delays. This work presented enhanced data 

aggregation and similarity-centric clustering through ICA (independent component analysis), which may mitigate 

computational demands, and energy usage. The scholars emphasized the significance of data consolidation in WSNs to 

diminish energy usage and enhance network adaptability in bottleneck network topology. 

Ahmad et al. [19] suggested a three-layer data aggregation architecture, termed the dynamic data aggregation scheme 

(PDDA), which prioritizes data for sensor networks due to the substantial volume of duplicated data collected by sensors. 

The suggested PDDA system is a hybrid methodology that employs clustered and tree-based strategies contingent upon 

application types. Consequently, the suggested PDDA methodology attains energy efficiency while minimizing data 

processing duration and overhead at the large data server level. 

 

III. EXPERIMENTAL SETUP 

The experimental set up of the research aims at comparing the results of three different systems namely fog computing, cloud 

computing, and a hybrid fog-cloud system. All these architectures perform the processing of data arriving at IoT sensors 

differently and the experiments compare the efficiency and execution time as well as the communication costs and the 

accuracy of machine learning algorithms being applied to the data. 

 

 
Fig 2. Raspberry Pi Model B. 

 

Hardware Configuration 

The hardware implementation of the experiments was underpinned by both cloud infrastructure and local fog machines Fig. 

3. Fog node was developed around a Raspberry Pi single-board processor (Model B) having 4 GB of RAM see Fig. 2. Such 

a device selection is characteristic of IoT systems where edge devices must often compute and make decisions locally without 

accessing a centralized cloud service. Data aggregation (data transformation) and machine learning (ML) algorithms locally 

through the Raspberry Pi computer simulated an IoT fog environment where computational resources are limited. 

On the cloud side, a powerful computing environment was utilized, which offers the computing capacity prerequisite to 

run the analytics algorithms effectively. A cloud service like AWS or Google Cloud was used to process raw and transformed 

data, which was executed much faster because of high-performance machines. The cloud infrastructure allowed offloading 
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of computationally-intensive actions like the execution of machine learning algorithms that needed more processing power 

than Raspberry Pi could support. 

The experiment was designed to test the efficiency of the architectures to manage a similar dataset in the same conditions 

with different computational resources and data transmission constraints. The selected configuration enabled a reasonable 

comparison of the three configurations. 

 

 
Fig 3. Hardware Configuration. 

 

Software and Tools Used 

The experiments were carried out in the software environment recreating the settings of real world IoT data processing 

scenarios. Five different analytics algorithms see Fig. 4 were implemented and executed using the WEKA Toolbox, a set of 

machine learning algorithms. The algorithms incorporated popular approaches in machine learning, and this aspect 

guaranteed the generality of the outcomes to other related IoT analytics problems. The experiments were carried out by 

applying the algorithms on raw data and on aggregated and feature extracted data to determine how data preprocessing (by 

the fog node) would affect the results. 

 

 
Fig 4. WEKA Toolbox. 
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The methods of data cleaning, feature engineering, and model application were applied in Python and its corresponding 

libraries, such as NumPy, pandas, and scikit-learn. The processing scripts were run on Raspberry Pi of the fog architecture 

and on cloud-based nonphysical machines of the cloud architecture. A stable internet connection that had 1 Mbps as the 

upload speed was used in all experiments, to ensure that the time taken on communication between the fog and the cloud 

remained the same throughout the trials. 

 

Dataset and Data Transformation Process 

The dataset employed in the experiments comprises the IoT sensor data simulating data used in the real-world monitoring 

systems, such as environmental sensors and smart devices. This dataset consisted of about 1 million rows, and approximately 

50MB in the raw state Dataset in Table 1. The raw information was transformed into three formats to suit the various set 

ups: 

• Raw Data: In the cloud-only and hybrid systems, raw data has been sent to the cloud to perform machine-learning, 

so the time to process raw data and the delay in communication could be measured. 

• Transformed Data: In the fog and hybrid approaches, data was processed on the Raspberry Pi by summing up sensor 

data into meaningful features. It was during this data aggregation process that the size of the dataset was reduced 

tremendously, being shed off of 50MB to the current 1.2MB, and the number of rows dropped by the same margin, 

with the current number of rows being approximated at 5, 418. This change compressed the data being sent to the 

network, emulating an edge processing scenario where data can be processed at the fog node to be later analysed in 

the cloud. 

The data transformation procedure not only provided a test of local aggregation via data transformation to minimize 

network congestion but also to allow a comparison between unextracted and processed data in terms of execution time and 

accuracy on corresponding machine learning operations. This enabled a thorough comparison of advantages and cost 

balances of the various data processing schemes in fog, cloud and hybrid computing. 

 

Table 1. Synthetic IoT Sensor Data for Experimentation 

Time stamp Sensor_Id Temperature Humidity Pressure Motion_Detected 

2025-01-01 00:00:00 52 22.65 64.80 1034.18 1 

2025-01-01 00:01:00 93 17.91 71.79 977.25 0 

2025-01-01 00:02:00 15 16.35 62.37 1005.36 1 

2025-01-01 00:03:00 72 26.28 73.67 953.51 0 

2025-01-01 00:04:00 61 18.24 78.00 978.40 0 

 

I. RESULTS 

 
Fig 5. Precision Results. 

 

Fig. 5 presents the precision outcomes of the five analytical algorithms used on the modified data. The findings indicate 

that MLP (multilayer perceptron) achieves the maximum precision levels, with 100% being the optimal outcome from the 

cloud assessment of raw dataset. Fig. 6 illustrates the data transmission duration from the fog (Raspberry Pi single-board 
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computer) to the cloud system. Two bars are displayed: one representing raw dataset and the other representing processed 

dataset. 

During the execution of this trial, the internet data transmission rate was 1 Mbps. The fog-only device incurs no data 

connection costs, since processing occurs inside the device without any interaction with the cloud. In the cloud method, the 

transmission of raw network data from fog to cloud is significantly high, but in the hybrid approach, the transmission of 

converted fog-to-cloud data transmission is minimal. This unsurprising outcome verifies that substantial savings on data 

transfers may be achieved by compiling and conditioning data early in the process. 

 

 
Fig 6. Data Communication. 

 

Fig. 7 depicts the execution duration of the five analytics techniques in both fog and cloud environments. The findings 

indicate that two techniques (MLP and logistic regression) exhibit considerable discrepancies between both sides. The IoT 

node inherently takes longer than cloud processing to execute analytics techniques due to its resource limitations. 

 

 
Fig 7. Execution Duration. 

 

Fig. 8 illustrates the cumulative execution duration for the 3 designs. Each architecture is evaluated based on three 

metrics: the execution duration of machine learning algorithms, the duration of the data conversion process, and the data 
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transfer duration between the cloud and the local device. This graph requires more clarification, since the findings are 

intriguing; the specifics are as follows: 

 

 
Fig 8. Total Processing Duration. 

 

IV. DISCUSSION OF RESULTS  

Fog (Raspberry PI) 

The data conversion procedure occurs nearby, and it is evident that the processing duration exceeds that of cloud-based 

solutions. The analytics methods were executed locally and required much more duration than cloud analysis due to limited 

computational capability. Nonetheless, data communication (duration required to transmit data to the cloud) is minimal as 

only consolidated information is forwarded to storage. The total processing time is average among the evaluated methods. 

 

Cloud 

Data communication refers to the duration required for raw data to traverse from an IoT node to the cloud system that is 

notably extensive due to the transmission of all raw data. Communication is the essence of the Internet of Things. It facilitates 

seamless device interaction, establishing a network that provides real-time information and insights. The significance of 

communication in IoT is in its capacity to enable prompt action and decision-making based on the disseminated data. The 

data conversion procedure was executed on the cloud system and, owing to the present resources, was completed rapidly. 

The analytics algorithms were executed on the cloud, requiring much less time than in the fog due to superior processing 

energy. Nevertheless, owing to the considerable transmission latency, the cloud represents the slowest method in this context. 

 

Hybrid 

The data modification procedure is executed at the edge on the Raspberry Pi, accompanied by standard observation. Data 

transmission refers to the duration required for modified data to traverse from an IoT device to the cloud, which remains 

minimal. The analytics algorithms were executed on the cloud on the changed data, requiring much less duration than local 

processing due to enhanced computational capacity. By integrating the numerous strengths, this results in an excellent 

execution time.  

In most instances, fog and hybrid techniques seem similar. Nonetheless, they vary about the location for implementing 

the ML algorithms on the changed data, namely in both cloud and fog devices [20]. The findings indicate data. In the fog 

computing paradigm, all processing, including ML algorithms and data fusion, occurs at the node level that may be seen as 

a decentralized infrastructure. Conversely, in the hybrid method, the raw data is first integrated inside the fog node to obtain 

features, which are then transferred to the cloud for the application of ML algorithms. The primary advantage of the hybrid 

strategy compared to the fog model is the use of cloud computing capabilities for executing ML algorithms, which necessitate 

more processing energy.  

Consequently, this phase aids in minimizing the processing duration, so contributing to the total data processing time. 

The preliminary findings indicate that the suggested hybrid methodology is efficacious for the selected dataset and analytical 

techniques. The findings clearly indicate that data transmission is efficient and yields substantial benefits. 
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Observations Recorded  

Data usage over the network 

It is acknowledged that larger data volumes incur higher consumption costs. The raw dataset included around 1 million rows, 

equating to roughly 50MB. Subsequent to the aggregation of data into features using data aggregation techniques, the row 

count diminished to 5,418 and the size lowered to 1.2MB. Early aggregation may provide substantial savings in data 

transmission and storage. This finding will progressively acquire significance. With the fast development in the quantity and 

quality of sensors, the speed and resolution of data delivery also escalate swiftly. By aggregating the data locally prior to 

transmission to the cloud, we are not only minimizing the volume of data but also identifying and transmitting just the 

relevant information. This will decrease the energy usage of fog and sensor equipment, which often get internet access via 

3G, 4G, or 5G. Consequently, the batteries in these gadgets will have an extended lifespan. 

 

Accuracy 

Aggregated data results in decreased accuracy relative to the use of raw data. All proposed methodologies are similarly 

impacted. The overall decline in accuracy is not significant: the minimum accuracy is 75%, while the maximum is around 

93%. The used analytic approach significantly affects accuracy, with trade-offs including local processing power and 

optimization techniques tailored to the specific environment. An appropriate equilibrium regarding resource usage, accuracy, 

privacy, data conversion, and energy use must be established, and our next research will delve further into this domain.  

From these trials and observations, we may deduce that a crucial element for future endeavors is the formulation of a 

solution that integrates decentralized data compilation with analytic techniques that may also be efficiently distributed. The 

phrase seems incomplete; please offer some context for a fuller response. operate in low power settings. For thoroughness, 

we want to indicate that we first endeavored to do the studies using a RPi B 512MB board. Nonetheless, this was unable to 

execute some analytical methods from the WEKA data mining tool owing to RAM limitations. Consequently, we used a 

little more potent variant, as previously stated. 

 

V. CONCLUSION  

We evaluated the performance of fog, cloud, and fog-cloud architectures in processing Internet of Things sensor data, 

focusing on execution time, network efficiency, and the efficacy of machine learning techniques. Although cloud-only 

systems possess significant computational capacity, they incur minimal data transfer cost due to the reception of raw data. 

The fog-only strategy offers advantages in local processing, whereas its shortcomings, previously noted, pertain to execution 

time limitations imposed by hardware constraints. The hybrid architecture attains an optimal equilibrium between local data 

aggregation at the fog node and the offloading of computationally demanding activities to the cloud, hence minimizing 

communication expenses and execution duration. 
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