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Abstract — This article presents a performance analysis of the DDS middleware, focusing on packet loss and delay across
various Quality of Service (QoS) configurations and network modes. A testbed was established with three physical nodes
(Mac13, Mac15, and Raspberry Pi4) utilizing Gigabit Ethernet and Wi-Fi interfaces to configure diverse operational
conditions. These experiments were conducted across an Ethernet and a 5 GHz WiFi network to evaluate the performance
of DDS under deterministic and probabilistic network settings. A series of experiments were conducted utilizing various
payload sizes (ranging from 92 to 1024 bytes) and distinct Quality of Service configurations, including Best Effort,
B2STKA, R10TKL, and B10TKL. The results provide a summary of the timing of packet loss, the impact of QoS
regulations on latency, and the performance trade-offs among operating systems (Linux, macQOS, and Raspberry Pi OS).

Keywords — Data Distribution Service, Packet Loss, Latency, Quality of Service, Network Performance, Operating
Systems, Real-Time Systems, Ethernet, Wi-Fi, Middleware.

I INTRODUCTION

Reliable Communications in distributed frameworks necessitate the participation of a middleware, communication channel,
and an application. The program executes core functionalities and often assumes one of two critical functions: server or
client. Irrespective of the function, the application may function as either a receiver and a transmitter (such as a client
receiving feedback, or transmitting requests, correspondingly. The application counterparts interact over the communication
channel, sometimes using the system middleware, which encompasses a collection of services situated above the network or
under the application layer, often enabling dependable communication and coordination among dispersed application peers
(e.g., RSocket and FSocket). Middleware generally offers application developers elevated programming abstractions (e.g.,
using remote items in lieu of sockets) and can also furnish an intermediary broker to dissociate the connection between
receiver and sender (e.g., ZeroMQ), among other options.

The Data Distributed Service (DDS) is an official protocol established by the OMG (object management group), widely
utilized in embedded frameworks, particularly within aerospace, military sectors, and industrial automation. DDS delineates
an API intended for facilitating real-time data dissemination. It employs a publish-subscribe (Pub/Sub) communication
mechanism and accommodates both data-object oriented data structures and messaging structures. Over time, DDS has
progressed via several revisions and additions, including both commercial and open-source implementation. Numerous
application sectors are embracing it, including smart grid, healthcare, military, aerospace, autonomous systems, industrial
I0T, and robotics. Table 1 enumerates some notable DDS middleware systems currently available.

DDS utilizes a data-oriented Pub/Sub system to provide efficient and reliable communications in instantaneous, mission-
based, and diverse networked systems. It simplifies the intricacies of communication control, decreasing model
interdependence while improving reliability and adaptability via wrapping. DDS enhances data compatibility by
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accommodating many formats, such as OMG IDL (Interface Definition Language) and XML (Extensible Markup
Language). Moreover, it is interoperable with UDP and TCP socked, facilitating efficient and flexible data transfer. It has
comprehensive QoS standards that accommodate many communication topologies, including the specification of data
transfer periods and the activation of temporal-event triggers. Table 2 delineates significant milestones in the growth of
DDS middleware, spanning from the original 2004 standardization to the most recent improvements in 2024.

Table 1. Major DDS Middleware Technologies

Authors Middleware Release Version Free & Open Company/Organization
Name Year Source
Liang, Yuan, and Eclipse Foundation (via
Lin, [1] Cyclone DDS | May. 2024 0.10.5 Yes ZettaScale)
Dust et al. [2] GurumDDS - 3.2.0 No GurumNetworks
Krinkin et al. [3] Vortex Mar. 2021 = 6.9.0 Yes ADLINK Technology
OpenSplice
Fujdiak etal. [4] | CoreDX DDS 2020 5.0.0 No Twin Oaks Computing
Bode et al. [5] Fast DDS Mar. 2025 3.2.0 Yes eProsima
Table 2. Sequential Chronology of DDS Evolution
Year Milestones
2004 OMG's first DDS 1.0 release.
2006 DDS 1.2 protocol is created; initial industrial application starts.
2007 RTI introduces DDS middleware, which improves industrial application scalability.

DDS advances interest in aerospace and military due to its reduced latency communications.

2008-2010 Initial use of 10T and intelligent grids starts.
2009 Initial ROS distribution launched: Mango Tango.
2010 ROS 1 launched.
2010 ROS employs DDS principles implicitly through integration layers.
2012 OMG released DDS v1.4, which has enhanced dynamic discovery capabilities and QoS
protocols.
2014 Commencemen_t of DDS Security_ProtocoI Desig.n. ROS_2 designates DDS as the standard
middleware, enhancing acceptance in robotics and automations.
2015 DDSI-RTPS 2.20 released, enhancing real-time scalability.
2016 DDS used in driverless cars for instantaneous communications.
2017 Release of ROS 2, which formally designates DDS as the main middleware.
Secure DDS version 1.1 has been finished, including encryption, access control, and
2018 authgntication featgres. Th_e ROS 2 “Ardent Ap_alone” version i_ncorporates DDS,
supplanting the centralized design of ROS 1. Prominent DDS providers (OpenDDS, Fast
DDS, and RTI Connext) enhance their support for autonomous systems and 10T.
2019 Eclipse Cyclone DDS becomes the stand_ard ROS 2 mi_ddleware and is extensively used in
automations and robotics.
X-Types v1.3, with flexible data structures, published to provide scalability in DDS
2020 communications. The application of DDS has broadened in self-driving cars, cloud-end-end
fusion systems, intelligent grids, and drones for industrial robots.
2021 DDS security used in military robots and UAV swarms to mitigate rogue node assaults.
2023 FogROS2 Scheduler/Controller utilizes D_DS to pro_vide safe worldwide networking in
decentralized robotics.
2023 Research emphasizes the latency-based trade-offs associated with implementing DDS privacy

in real-time networks.
Recent DDS updates (e.g., Fast DDS 3.2, RTI Connext 7.4) provide minimal delay and
2024 improved compatibility, accommodating ML/AI pipelines for real-time inferences and remote
robotic learning.

Research on DDS and OPC UA for compatibility is now underway. Endeley et al. [6] introduced an intelligent gateway
to facilitate compatibility between DDS and OPC UA within an 10T context. The OPC UA function suit is integrated via
the intelligent gateway, facilitating communication between DDS and OPC UA. Nonetheless, it is confined to OPC UA and
lacks support for OPC UA Pub-Sub.

Cheikh, Mastouri, and Hasnaoui [7] advocated for the employment of data-centric middleware to facilitate collaborative
vehicular models for vehicle-to-infrastructure or V2V interaction. Their suggested data-centric middleware utilizes the Pub-
Sub concept and incorporate QoS capability. They offered a comprehensive distributed architecture using a DDS as an
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embedded lab framework for avionics. The proposed system enables the evaluation of modular avionics alongside the whole
model, which includes simulated entities and actual hardware, by integrating several communication bus protocols and
enhancing adaptability via data gateways and DDS. They also presented a DDS gateway design facilitating interaction across
DDS regions for extensive CPS (cyber-physical systems). Their design has four primary elements: network module, routing
manager, topic manager, and interface module, along with a mechanism to mitigate blocks via sequential access.

The aforementioned studies indicate that DDS is used across several domains, such as 1loT, automotive, avionics, and
CPS, highlighting the increasing significance of connectivity and interoperability across diverse systems. Furthermore, the
majority of current research emphasizes gateways for DDS and OPC UA, with less consideration for scalability. Our work
focuses on the systematic comparison of communication capabilities of DDS middleware in different network scenarios and
profiles of Quality of Service (QoS). Through structured experimentation across several hardware platforms and operating
systems, the experiment seeks to measure core performance variables like packet loss and latency.

The remaining sections of this study is organized in the following manner: Section Il provides a background study of our
work, highlighting the effect of QoS policies on real-time communication, and comparative network studies across different
protocols and platforms. Section 111 describes our experimental architecture, data collection, as well as QoS profiles and
system configuration. Section IV and V provide a detailed discussion of our findings. Lastly, Section VI concludes the study
and highlights the significance of evaluating DDS middleware across various network setups and QoS profiles, which impact
packet loss and latency.

II. BACKGROUND STUDY

Impact of QoS Policies On Real-Time Communication

Study on validating QoS policies for DDS is scarce. From a model-riven viewpoint, the specification of QoS policies is a
component of DDS architecture modeling. This section summarizes current research in DDS modeling. We also examine
several studies on the integration of DDStosmart grids. Bertaux et al. [8] examined the employment of DDS QoS rules to
fulfill the quality needs of real-time systems comprehensively. They specifically concentrate on quality rules specification
for data availability and latency using the MARTE (modeling and analysis of real-time embedded systems) framework. In
this paper, the significance of QoS policy modeling in DDS is comprehensively elucidated. Their findings indicate that both
the growth process and the quality of communication may be enhanced.

The work by Putra and Kim [9] advocated customizing the DDS participant discovery for a combat system depending
on the system's attributes and needs. The customized model interacts with several levels in DDS, including those near to the
discovery system and more remote ones, such as the interface layer. They suggested a model-based methodology for tailoring
DDS to accommodate WSNSs. A layer was established underneath DCPS in DDS to facilitate the adoption of DDS for WSNs.
In their research [10], Alaerjan identified the deficiencies in DCPS to enhance DDS standard coverage using UML. The
enhanced model serves as the foundation for developing flexible DDS to accommodate nodes with constrained
computational resources.

<<entity>> <<entity>>
-
>
Subscriber DataReader
DomainPartici | <<entity>>Domain »| <<entity>>Topic DataTypeSupport
pantFactory w Participant v
Every <<entity>> has
1. Listener
2. StatusCondition and Status List N <<entity>> <<entity>>
" . >
3. QosPolicy list Publisher DataWriter

Fig 1. UML Flowchart lllustrating the DDS Data-Oriented Publish-Subscribe Interfaces.

Fig. 1 depicts the comprehensive data-centric Pub-Sub paradigm, including the following entities: Topic, Subscriber,
Publisher, DataReader, DataWriter, and Domain Participant. All these entities inherit from Entity, signifying their capacity
to be set by QoS rules, enabled, receive event notifications via listener objects, and accommodate situations that the
application may await. Every entity base class specialization has a matching dedicated receiver and an entity of appropriate
QoSPolicy settings. The publisher denotes the entities accountable for data dissemination. A Publisher can disseminate data
of several forms. A DataWriter serves as a keyed interface to a Pub; participants employ DataWriter(s) to convey the value
and modifications of data of a certain form. Upon receipt of novel data values, the Publisher is responsible for deciding the
appropriate timing for issuing the associated message and executing the release, in accordance with its QoS, the QoS
associated with the relevant DataWriter, or/and its internal condition.
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Certain QoS regulations are now implemented in several Pub-Sub systems or models, including CORBA Notification
Service, Distributed Asynchronous Collections, and Java Message Service. This pertains to message dependability, message
priority, earliest delivery time, expiration time, message ordering, or duplicate message identification, for example. These
QoS criteria may be supported or unsupported, depending upon the architecture. To our knowledge, QoS factors like as loss
ratio, jitter, availability, bandwidth, and latency, extensively examined in the direct communication framework, are
insufficiently addressed in Pub-Sub models.

An et al. [11] review various QoS strategies influenced by fluctuations in network and computing resources, as well as
the automated configuration of Pub/Sub intermediary software in cloud settings. The suggested method modifies the network
transport platform to synchronize with the middleware, addressing QoS configuration challenges in DRE (distributed real-
time embedded) models inside cloud settings. The methodology employs ANN techniques to dynamically ascertain the
appropriate transport channel for the Pub/Sub intermediary software after the execution of the DRE model. ANN instruments
are learned with data settings to optimize QoS and forecast feedback duration required in DRE models. The method
employed by the middleware employed the ANT (adaptive network transports) architecture to choose the optimal transport
protocol, considering different QoS factors in relation to the availability of computing power.

Comparative Network Studies Across Platforms and Protocols

According to O’Ryan et al. [12], the selection of an operating system has a major influence on the performance of
middleware, especially in real-time and distributed applications. They analyzed real-time communication protocols and
found that Linux, due to its monolithic kernel and its full customization capabilities, is much faster in situations that promote
low latency, high throughput communication. Because Linux supports explicit thread handling and core binding, it can be
particularly useful to middleware that performs high-frequency messaging or real-time data flow. MacOS, meanwhile, is
stable and easy to work with but lacks versatility in such optimizations and Raspberry Pi OS (a lightweight Linux operating
system) is suitable in terms of edge execution due to affordably priced, but ultimately restricted by hardware constraints.

Middlewares also rely heavily on the type of network they use. The post-processing data will be based on Ethernet
connections as these connections offer better stability, lower latency, and less packet loss than Wi-Fi connections, as
mentioned by Carrascosa-Zamacois et al. [13]. The benefit of Wi-Fi, its convenience, comes at the cost of variable latency
and increased interference susceptibility, and these factors can negatively impact middleware performance, particularly in
applications where timely and reliable data delivery are required. This can also be inferred in the 10T middleware
benchmarks, where Ethernet is more capable of greater throughput and consistent performance.

Transport modes, including unicast and multicast also affect middleware scalability and resource demands. Unicast is
compatible and reliable, in that dedicated streams of data can be dedicated to each client, although the resource needs are
linear with the number of clients. Multicast, in contrast supports efficient one-to-many communication, lowering server and
network load with shared communication. Nevertheless, the use of multicast requires network architecture support and OS,
and can be less dynamic or complicated in heterogeneous or wireless networks. Collectively, these works express that
optimal middleware performance is obtained when there is a specific mapping of OS, network type and transport mode to
application demands and deployment context.

I1l. DATA AND METHODS
To objectively analyze the communication performance of the DDS middleware, this study presented an experimental
platform that included carefully controlled hardware platforms, network topologies and stacked software layers. The goal of
this part was to record the packet behavior in real time, the change in latency and the packet loss patterns using appropriate
data collection techniques and Industry standard analysis tools based on different QoS configurations.

Experimental Architecture

The hardware platform comprised three physical nodes, a publishing workstation (Mac13), a subscribing workstation
(Mac15) and a Raspberry Pi 4 Model B. Every node was capable of Gigabit Ethernet interface and 5 GHz wireless LAN.
The experiments were performed both over Ethernet and Wi-Fi to model different operating environments, e.g., deterministic
links with Ethernet and probabilistic links in the case of Wi-Fi. The machines were run with macOS Ventura (v13.6.5), the
Linux distribution of Ubuntu 22.04 LTS, and the Raspberry Pi distribution (Debian-based), providing a wide range of
execution environment.

The communication structure between the DDS was implemented based on eProsima Fast DDS v2.10 that supported
dynamic QoS policy setup, participant discovery, and real-time publish-subscribe. Wireshark v4.2 was used as the main
packet capture application with the following filters frame.len == 194 being used to narrow down and capture DDS specific
packets. In each test uniform sized data packets (payloads of 92 to 1024 bytes) were published at a uniform interval, and the
transmission integrity was measured on 10,000 iterations.

Data Collection and Measurement

The key performance indicators were packet loss ratio and end-to-end latency, which were captured with timestamps placed
in DDS message headers and trace packet information on the system level. The ratio was calculated as the packet loss ratio
(PLR) by comparing total number of published packets P;,.q; With successful packets received B..., in Eq. (1).
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PLR = Ptotal=Precv X 100 (1)

total

Latency (L) was defined as the time arrival difference between the DDS message timestamp T;fz?b of the publisher node

and the timestamp of its reception ngi)b at the subscriber node. This is expressed as Eq. (2) where i varies to every message.

L=T® _7®

sub pub’ for l = 1,2, ,N —_ W =+ 1 (2)

The short-term jitter was solved by computing a rolling average latency measure with window of size W as in Eq. (3).
- 1 @j+W— .
L= Ly wherej =12, ,N-W+1 3)

The strategy ironizes out high signal fluctuations and allows displaying long-term structural latency tendencies.

QoS Profiles and System Configurations

The DDS middleware was both set with default and custom QoS settings. In particular, they contested the following
configurations: Best Effort, BIOTKL, R10TKL and B2STKA where reliability, durability, and history depth combinations
vary in each case. These QoS profiles were then plotted to situations in which low latency or high reliability were prioritized
as per application objective. The test procedure contained 10 sets in each of the configurations and each of the sets involved
10,000 messages transmitted. A restart of the system was made between tests to counteract cumulative memory or buffer
effects. Table 3 summarizes the details of testing conditions used in each of the test profiles.

Table 3. Test Configurations and QoS Settings

Test ID | Network Type | OSPlatform | QoS Profile Pa)(/gﬁ(isilze Iterations | Interval (ms)
T1 Ethernet Linux Best Effort 194 10,000 10
T2 Wi-Fi (5 GHz) macOS B10TKL 194 10,000 10
T3 Ethernet Raspberry Pi R10TKL 194 10,000 10
T4 Wi-Fi (5 GHz) Linux B2STKA 194 10,000 10
T5 Ethernet macOS B10TKL 1024 10,000 5

Collisions, jitter and dropped frames were observed in network interfaces with a particular focus on multicast group
results and interface queue latencies. Latency anomalies were matched with the operating system kernel logs where
measurement validity was addressed.

IV.RESULTS

We evaluate the incidence of communication packet delay, considering the data volume and rate specifications of the users’
application. We evaluated the efficacy of the DDS communication structure using DDS intermediary software via tests
designed to assess network performance and detect occurrences of packet loss. We assessed the efficacy of the Ethernet
protocol by transmitting successive batches of DDS data packets and quantifying the packet delay from the Pub to the Sub.
We repeated the procedure for both multicast and unicast setups to ascertain the permissible degree of frame delay that might
not hinder the application's efficiency. Fig. 2 and Fig. 3 depict the findings, demonstrating the duration of the trial in
correlation with the incidence of packet delay, as documented by Wireshark. The trials were performed on shared-time
servers, indicating that implementation on systems with real-time OS (operating systems) might enhance efficiency metrics
further.

Fig. 2 presents a Wireshark screenshot of client data transferred over the DDS standard. Fig. 3 illustrates the DDS
standard frames, which were captured and processed protocol frames according to their packet size in Wireshark. The
efficiency analysis shown in Fig. 4 examines the correlation between test iterations and packet delay for DDS functioning
under a best-effort QoS setting. Furthermore, Fig. 5 presents an examination of the frequency of dropped data packets and
the reliability of the DDS 5 GHz wireless link. It presents the exact technological specifications of the wireless interface
employed by both the publisher and subscriber. The noted associations between the received and released data in DDS
transport suggests a minimal packet loss rate, possibly attributable to the absence of networking traffic in the local test
setting.
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Fig 2. Client data with 92 Bytes in the Retrieved DDS Protocol, As Analyzed by Wireshark.
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75961 118.6018913 192.168.1.137 192.168.1.44 RTPS
75982 118,6018963 192.168.1.144 192.168.1.44 RTPS
75963 118,6018917 192.168.1.137 192.168.1.44 RTPS
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Fig 3. Obtained DDS Protocol Packets; Wireshark filters (Frame.Len==194).
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Fig 5. Packet Delay and Trustworthiness Efficiency for DDS On 5 GHz Wi Fi with A Best Effort QoS Configuration.

Fig. 6 and Fig. 7 provide a detailed examination of the rolling average latency, taking into account various QoS rules,
on 2 workstations designated as publisher (Mac13) and subscriber (Mac15). The statistics depict the fluctuations in latency
patterns over different packet amounts, highlighting the impacts of various QoS rules, including R10TKL and B10TKL.
Latency, quantified in ms, assesses the immediate efficiency of the communication channel.
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Fig 6. Analysis of Rolling Average Latency Patterns Across Various QoS Rules in a Pub/Sub Framework.

Fig. 7 presents a bar chart illustrating latency averages, offering a clear depiction of the differing efficiency across various
groupings of OS across many QoS situations, including B2STKA, R10TKL, and B10TKL. The findings illustrate the delay
anticipated when deploying these systems under specified QoS conditions. The results indicate that QoS settings
substantially affect the delay encountered by the systems. BIOTKL demonstrates differing latencies when utilized with
MacOS and Linux in contrast to MacOS and Raspberry Pi, as seen in Fig. 7. These findings are crucial for enhancing real-
time connectivity standards in microgrid environments, where rapid data transmission is critical.
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Fig 7. Comparison of Average Latency Trends Relative to QoS Policy Between MacOS and Linux, As Well as Between
Raspberry Pi and MacOS Computers.

V. DISCUSSION

The dissemination of real-time data has lately become a significant study domain. A workshop focused on the subject “1st
International Workshop on Data Distribution in Real-Time Systems (DDRTS'2003)” took place in May 2003. The OMG
enhances research initiatives by normalizing data delivery inside an intermediary service. The formulation of dynamic
scheduling techniques in data-centric Pub-Sub systems operating on real-time networks is a significant research challenge,
and in recent years, several teams and businesses have actively engaged in this area. The issue of planning the transmission
of real-time data is addressed in [14]. It offers a refined variant of the Longest-processing-time-first (LPT), which minimizes
overhead.

Comparable research [15] delineates a Broadcast on Demand methodology that organizes the broadcast using the 1st
deadline first, hybrid, or periodic scheduling techniques. The study presented in [16] outlines a conjectural data distribution
service, which leverages temporal and geographic reference locality to ascertain the data to be distributed. These solutions
cater for customers' deadline timing limitations but neglect both data time coherence and the employment of prevailing real-
time systems.

Embedded sensor networks have been a significant focus of research efforts concerning data dissemination. Although
the work presented below offers significant insights into addressing data distribution issues in sensor networks, it fails to
account for the real-time nature of both the applications and data. In other words, neither time limits for data supply nor time
coherence of the data are maintained. A study by Zervopoulos et al. [17] on real-time data dissemination was conducted at
the University of Virginia (UVa) regarding wireless sensor networks. This work addressed the time limits of requests.
Furthermore, time validity is acknowledged in that data levels are presented prior to their expiration, accompanied by
appropriate confidence levels. Nonetheless, it does not guarantee that the information is time-valid upon arrival to the
requester.

Critical findings during the evaluation of the DDS communication system indicated how variances in network situations
and QoS settings manifest in DDS performance, especially in terms of packet loss and delay. The results indicate that when
it comes to best effort QoS settings it only showed a few drops indicating that DDS can provide quality traffic assurances in
less congested networks with controlled environments. Communication was over Ethernet in both unicast and multicast
mode and this generally supported reliable data delivery. But multicast transmission showed a little more packet loss rate.
Almadani et al. [18] concluded that multicast in DDS behaves poorly when the subscriber load becomes high and there are
dynamic changes occurring in the network. Their study had shown that correct implementation of multicast is critical to the
preservation of reliability especially in large or dense networks.

Latency analysis identified the importance of QoS policies in terms of influencing responsiveness of communications.
Custom configuration options like BIOTKL and R10TKL resulted in detectable differences in latency, indicating that these
settings should be adjusted to meet application specific timing needs. The effect of QoS on latency has been quite well
analyzed by Zhu et al. [19], where he has observed that DDS enhances the control of delivery guarantees and this fact greatly
affects the timing behavior in distributed systems. The results hereby support the submission that QoS tuning is important
in ensuring stability in performance, particularly in real-time environments.

Furthermore, the differences in the latency with different platforms also demonstrate the significance of the operating
system on which it runs and the hardware. The findings showed that Linux performed steadily compared to macOS, and that
Raspberry Pi systems were highly competitive in terms of latency in certain configurations. This observation reaffirms the
finding of An et al. [20], which illustrated that the execution environment is also a key factor in the performance of a real-
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time middleware. Their work highlighted that the system-level delays could not be disregarded in performance-sensitive
systems even though middleware such as the DDS was used.

VI. CONCLUSION

The assessment of DDS middleware under different network topologies and various values of QoS parameters highlights
the importance of those parameters in determining the latency and packet loss. Although Ethernet connections provide more
stable results, Wi-Fi connections provide acceptable communication results when properly optimized QoS settings are
established but these connections have a greater level of variability in delays. Moreover, the involvement of different
operating systems revealed certain performance inconsistency, where Linux-based computers produced comparatively better
results than macOS and Raspberry Pi OS. These observations lead to the conclusion about the need in system-level
improvements and how real-time operating systems can help one substantially improve DDS performance in a real-time
application.
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